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Abstract
The flux-flow dynamics in a long Josephson junction is studied for the
in-line and overlap geometry. A simple analytical model, reported recently
for the overlap case, is extended to include asymmetric boundary conditions
resulting from the self-field effects. Analytical results are compared with
numerical simulations both for the magnetic field patterns within the
junction and for the current–voltage (I–V ) characteristics. It is shown that,
depending on the junction geometry, the self-field distribution may affect
considerably the fluxon dynamics and consequently working conditions of
the flux-flow oscillator.

1. Introduction

Multifluxon dynamics in a long one-dimensional Josephson
junction has recently attracted considerable interest due to
possible applications in superconducting mm-wave electronics
[1–3]. Particular attention has been paid to a junction operating
in the flux-flow (FF) mode, which can be described briefly as
unidirectional collective motion of a dense train of fluxons,
created continuously at one end of the junction and annihilated
at the other.

Beginning in the early 1980s [4], various aspects of
the FF mode have been investigated both theoretically and
experimentally. At present, FF oscillators show promising
performance; however, some important parameters (e.g.
radiation linewidth) are still not satisfactory [5–8]. Thus,
there is a need for further efforts to optimize the structure
and working conditions of Josephson junctions operating in
the FF regime.

In recent years, there has been growing interest in
non-uniform junctions, in which asymmetry creates unequal
conditions for the fluxon propagation. In this context,
inhomogeneous driving has been considered [9], as well
as various geometrical structures, including exponential
[10], semi-circular [11] and quarter-circular junctions [12].
Relatively less attention has been paid to the asymmetry
caused by self-fields, closely related to the constant current
flow through the junction. Such self-fields are usually
neglected; however, depending on the geometry, they may
affect considerably the boundary conditions, and consequently
fluxon dynamics within the junction.

The aim of the present work is to study the influence
of self-fields on the FF mode behaviour in a long Josephson
junction. To this end we compare two distinctly different
geometrical structures, in-line and overlap, in which the self-
fields affect in a different way the formulation of boundary
conditions. In the in-line case, the net magnetic field at the
junction ends is a superposition of an external magnetic field
and a self-field due to a constant current flowing through the
junction. On the other hand, in the overlap geometry the self-
fields at the junction ends are negligible while the self-fields
along the junction enter the formalism indirectly as a constant
bias current density γ [13].

To compare both structures we generalize a simple
analytical model reported recently [14, 15]. An approximate
solution of the perturbed sine-Gordon (sG) equation consists
of a dense fluxon train (FF mode) accompanied by two quasi-
linear plasma waves propagating in opposite directions with a
velocity close to the critical (Swihart) velocity. Superposition
of the FF mode and two plasma waves makes it possible to
satisfy boundary conditions for arbitrary time t. Having found
an approximate analytical solution, we are able to evaluate the
current–voltage (I–V ) characteristics of the junction.

The paper is organized as follows. In section 2 we
formulate the problem, i.e. we introduce the perturbed sG
equation, present two geometrical structures (in-line and
overlap) and discuss corresponding boundary conditions. An
approximate analytical solution for the FF mode is derived
in section 3. We also discuss large-amplitude corrections,
which are important in the vicinity of the main FF step,
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Figure 1. Electrode geometry of a quasi-one-dimensional
Josephson junction: (a) in-line case; (b) overlap case.

where the amplitudes of plasma waves go beyond the quasi-
linear limit. In section 4 the I–V characteristic is derived
using a simple perturbation technique. Analytical results are
compared with numerical simulations in section 5, both for the
instantaneous field patterns within the junction and for the I–V

characteristics. Section 6 contains a summary of the results
and concluding remarks.

2. Formulation of the problem

Fluxon dynamics in a long one-dimensional Josephson
junction is governed by the perturbed sG equation [13, 16, 17]

φxx − φtt − αφt = sin φ − γ, (1)

where φ denotes the quantum phase difference across the
junction, α is the loss factor and γ is the normalized bias
current density. The space coordinate x has been normalized
to the Josephson penetration depth λJ and time t to the inverse
plasma frequency ω−1

0 .
Both the current density γ and the boundary conditions

at the junction edges depend on the electrode geometry. As
mentioned above, in this paper we consider two distinctly
different junction structures, shown schematically in figure 1.
In quasi-one-dimensional structures we have W � L, and for
a long junction we assume additionally L � 1.

For the in-line geometry (figure 1(a)), the current density
γ does not appear explicitly in equation (1), whereas the energy
is delivered through the junction ends. Thus, we can set γ = 0,
and assume the boundary conditions [18]

φx(−L/2) = h − I/2, φx(L/2) = h + I/2, (2)

where h denotes the normalized external magnetic field and
I is the total dc current, generating self-fields at the junction
ends.

On the other hand, for the overlap geometry (figure 1(b)),
the self-fields are negligible at the junction ends and the
boundary conditions can be reduced to

φx(−L/2) = h, φx(L/2) = h. (3)

The bias current density γ follows from the field
distribution in a real two-dimensional junction, and for the
overlap geometry can be assumed to be a constant equal to
I/L [13].

Thus, we can see that the self-fields play an essential role
in the formulation of boundary conditions. As a result, we can
expect essentially different solutions of equation (1) for the
two geometrical structures outlined above.

3. Approximate analytical solution

In the FF mode, we deal with a unidirectional motion of
a fluxon train on a fast rotating background. Following
[15, 19, 20] we can write an approximate solution of
equation (1) in the form

φ = φ0 + ψ, ψ � 1, (4)

where φ0 denotes a rotating background term (linearly
dependent on time) and ψ is a quasi-linear term representing
fluxon motion along the junction.

Substituting equation (4) into the sG equation (1) we
obtain for ψ small

φ0,xx + ψxx − ψtt − α� − αψt � sin φ0 + ψ cos φ0 − γ,

(5)

where � = φ0,t denotes the frequency of the background
rotation.

In the overlap geometry, the term φ0 was found to be
equal to hx + �t [15, 19], thus its x-derivative φ0,x is constant
and equal to the external magnetic field h. In the in-line
geometry the boundary conditions (2) imply, however, that
the net magnetic field is different at both junction ends, and
consequently the term φ0,x must be x-dependent. Below we
consider this case in more detail.

3.1. In-line geometry

To satisfy the boundary conditions (2) we assume a more
general form of φ0

φ0 = θ(x) + �t, (6)

where θ(x) = hx + δx2 and δ is to be determined.
For the in-line geometry we have γ = 0. Thus, comparing

time-independent terms in equation (5) we find

φ0,xx = α�, (7)

hence δ = α�/2.
It can be shown [14, 15] that � is simultaneously the

fundamental frequency of the quasi-linear term ψ . Thus,
collecting time-dependent terms in equation (5) we obtain a
linear differential equation

ψxx − ψtt − αψt = sin φ0, (8)

where the term ψ cos φ0 has been omitted, as giving no
contribution of frequency �.

To solve equation (8) effectively it is convenient to
introduce a complex notation

ψ(x, t) = Im[ψ̃(x, t)] = Im[ψ̂(x) ei�t ] (9)

and rewrite equation (8) as

ψ̂xx + β2ψ̂ = eiθ , (10)

where β2 = �2 − iα�.
Using standard methods we find the general solution of

equation (10)

ψ̂ = eiβx

2iβ

∫
ei(θ−βx) dx

− e−iβx

2iβ

∫
ei(θ+βx) dx + A eiβx + B e−iβx. (11)
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The first two terms correspond to a fluxon train propagating
unidirectionally along the junction. The last two terms
describe plasma waves propagating in opposite directions with
a critical velocity �/β � 1.

For θ being a quadratic function of x, the integrals in
equation (11) cannot be calculated analytically. However, we
can define

F±(x) =
∫ x

−L/2
ei(θ±βξ) dξ (12)

and evaluate the above definite integrals using arbitrary
numerical or approximate methods. Note that the lower limit
of integration is irrelevant since any constant contribution to
those integrals can be incorporated into the constants A and B.

To check the boundary conditions we substitute φ =
φ0 + ψ into equation (2). It is clear that the time-independent
terms should satisfy

φ0,x(±L/2) = h ± α�L/2 = h ± I/2, (13)

where I = α�L denotes the ohmic line.
The time-dependent term ψx(x, t) should vanish at the

junction ends, thus for a complex solution we can write

ψ̂x(±L/2) = 0. (14)

Using equations (11) and (12), and noting that
F±(−L/2) = 0 we find

A = eiβLF−(L/2) + F +(L/2)

4β sin βL
,

B = F−(L/2) + e−iβLF +(L/2)

4β sin βL
.

(15)

Substituting the constants A and B into equation (11)
and next into equation (4), we obtain finally an approximate
analytical solution of equation (1) satisfying the boundary
conditions (2) for the in-line geometry. This solution is
parametrized by � (being proportional to the voltage across
the junction) and makes it possible to evaluate the I–V

characteristics (see section 4).

3.2. Overlap geometry

For the overlap geometry we neglect the self-fields [13, 18],
thus θ(x) = hx and φ0,xx = 0, which makes further
calculations much easier. Comparing time-independent terms
we obtain

γ = I/L = α�, (16)

where I = α�L denotes the ohmic line, as before.
For time-dependent terms we obtain a complex solution

for ψ̂(x) in the form of equation (11). This time, however,
θ(x) = hx and the solution can be expressed in a fully
analytical form:

ψ̂ = − eihx

h2 − β2
+ A eiβx + B e−iβx. (17)

As before, the first term corresponds to a fluxon train,
while the last two terms describe plasma waves propagating

in opposite directions. Imposing the boundary conditions
ψ̂x(±L/2) = 0 we obtain

A = h sin[(h + β)L/2]

(h2 − β2)β sin βL
,

B = h sin[(h − β)L/2]

(h2 − β2)β sin βL
,

(18)

where A and B are equivalent to p1 and p2, derived in [15, 21].
Substituting A and B into equations (17) and (4) we

obtain an approximate analytical solution satisfying boundary
conditions (3) for the overlap geometry. However, due to
the lack of self-fields at the junction ends, this solution is
essentially different from that for the in-line geometry.

3.3. Large-amplitude corrections

So far, we have assumed ψ to be small enough to have

sin φ � sin φ0 + ψ cos φ0. (19)

However, when the amplitudes of the ψ solution are larger,
we should use the exact relation

sin φ = sin φ0 cos ψ + sin ψ cos φ0. (20)

Note that the real solution ψ can be formally written as

ψ(x, t) = Im[ψ̂(x) ei�t ] =
∑

i

(ai sin ηi + bi cos ηi), (21)

where ψ̂(x) is given in the form of equation (17), ai and
bi denote real and imaginary parts of complex amplitudes in
equation (17), respectively, and ηi is a phase of the ith term.

Substituting equation (21) into equation (20) and using
well-known expansions [22] we find the leading time-
dependent term to be

sin φ = P sin φ0 + . . . , (22)

where P = ∏
i J0(ai)J0(bi) and J0(a) denotes the Bessel

function of the order 0.
If ai, bi → 0 then P → 1 and we obtain again the quasi-

linear case. However, for ai, bi larger, the right-hand side of
equation (10) should be multiplied by P defined above. Note
that P is dependent on the amplitudes ai and bi which are to
be determined. Fortunately, the problem can be easily solved
iteratively, and for a typical set of parameters only a few steps
are required to obtain a self-consistent solution.

It will be shown in section 5 that large-amplitude
corrections are relevant only in the overlap case, in which the
time-dependent contribution ψ is relatively large in the vicinity
of the FF step. In the in-line geometry, however, the amplitude
of ψ is much smaller and the quasi-linear approximation (11)
yields satisfactory results.

4. Current–voltage characteristics

To evaluate the I–V dependence we consider the Hamiltonian

H =
∫ L/2

−L/2

[
1

2
φ2

x +
1

2
φ2

t + (1 − cos φ)

]
dx (23)

and use a simple perturbation procedure based on the energy
balance [16, 17].

For a steady-state, strictly periodic solution, the time-
averaged change of energy must be equal to zero. Thus,
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differentiating equation (23) with respect to time and using
equation (1) we find the energy balance∫ L/2

−L/2

(
γ 〈φt 〉 − α

〈
φ2

t

〉)
dx + 〈φxφt 〉|L/2

−L/2 = 0, (24)

where 〈f (t)〉 ≡ (1/T )
∫ T

0 f (t) dt .
The time derivative φt of the general solution (4) is given

by

φt = φ0,t + ψt = � + � Re[ψ̂(x) ei�t ]. (25)

Note that the time-averaged value of φt is equal to � and can
be identified with the constant voltage across the junction. On
the other hand, φx(±L/2) is time-independent and given by
appropriate boundary conditions (2) or (3). Hence, the energy
balance can be rewritten as

γ�L − α

∫ L/2

−L/2

〈
φ2

t

〉
dx + �φx |L/2

−L/2 = 0. (26)

For the in-line geometry the bias current density γ is equal
to 0 and the energy is delivered through boundaries. According
to equations (2) φx |L/2

−L/2 = I , hence

I = α

�

∫ L/2

−L/2

〈
φ2

t

〉
dx. (27)

For the overlap geometry we have γ = I/L but
φx |L/2

−L/2 = 0. Hence, substituting these relations into
equation (26) we obtain again equation (27). Thus, in
spite of different mechanisms of energy supply we obtain
the same formula describing the current as a function of φt ,
corresponding to a voltage across the junction.

To find the time-averaged value of φ2
t we note that only

quadratic terms contribute, thus using the complex number
formalism we find〈

φ2
t

〉 = �2
[
1 + 1

2 |ψ̂(x)|2] . (28)

Substituting equation (28) into equation (27) we obtain
finally the I–V characteristic

I = α�L

[
1 +

1

2L

∫ L/2

−L/2
|ψ̂(x)|2 dx

]
. (29)

We can see that the total current I consists of a linear
(ohmic) term and a nonlinear contribution following from the
Josephson current.

5. Results and discussion

In this section we compare theoretical results derived above
with numerical simulations obtained by the finite-difference
implicit scheme [23]. An example of the magnetic field
distribution within a long junction (L = 10) is shown in
figure 2 for the in-line geometry. The frequency �, i.e.
the constant voltage across the junction, has been chosen
arbitrarily as � = 4, which corresponds to a non-relativistic
velocity of the fluxon train. For the remaining parameters we
assume realistic values h = 6 and α = 0.1. The solid line
represents an approximate analytical solution of equation (1),
given by φx as a function of x for time t fixed. Open circles
show the results of numerical simulations for a discrete set
of x values. We can see that the fluxon train is indeed
dense; the individual fluxons overlap and their amplitudes
are x-dependent, due to the interference with plasma waves.

-4 -2 0 2 4
3

4

5

6

7

8

φ

x

Figure 2. Magnetic field distribution within a long junction in the
in-line geometry. An approximate analytical solution (solid line) is
compared with numerical results (open circles) for � = 4. The
remaining parameters are L = 10, h = 6 and α = 0.1.
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Figure 3. The same as in figure 2 but for the overlap geometry.

According to equation (6), φ0,x is a linear function of x, making
it possible to satisfy boundary conditions (2).

For comparison, figure 3 shows the magnetic field
distribution for the same set of parameters but in the overlap
geometry. Contrary to the previous case, now φ0,x is constant
and equal to h, while the self-fields enter the formalism
indirectly via the constant bias current density γ . As before,
fluxons interact with plasma waves, and the resulting
amplitude of the fluxon train is x-dependent.

In both structures we can see excellent agreement between
analytical and numerical results. This means that the
approximate expressions (11) and (17), in spite of their
simplicity, reproduce correctly exact solutions of the sG
equation (1), subject to appropriate boundary conditions.

The I–V characteristic for the in-line geometry is shown
in figures 4(a) and (b). As before, an analytical approximate
solution is represented by a solid line, while open circles
correspond to numerical results. An analytical approximation
follows from equation (29), where � has been identified with
the constant voltage V across the junction. In the numerical
simulations we fix the current I and next evaluate an average
value of φt after sufficiently long evolution (when the solution
can be regarded as stationary).

In figure 4(a) we can see a set of equidistant Fiske-like
steps on the background of an ohmic line. In the analytical
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Figure 4. (a) I–V characteristics calculated analytically (solid line)
and numerically (open circles) for the in-line geometry. The
junction parameters are the same as in figure 2. (b) Details of the
I–V characteristics in the vicinity of V = h.

approximation, each step is associated with a segment of
negative differential conductivity, which is not visible in the
numerical data. On the other hand, numerical results reveal a
hysteretic behaviour, as expected. Details of the I–V curve in
the vicinity of V = h are shown in figure 4(b).

The I–V dependence for the overlap geometry
(figure 5(a)) is essentially different from that of figure 4(a). Far
from the region V � h we can see basically an ohmic line with
small equidistant maxima resulting from the interference with
plasma waves. However, in the vicinity of V = h, we observe
the main FF step accompanied by Fiske-like resonances shifted
by π/L from the main peak. Figure 5(b) shows details of
the I–V curve in the region V � h. Due to relatively large
amplitudes of the FF mode and plasma waves appearing in
equation (17) for V close to h, we take into account large-
amplitude corrections in that region. Additionally, the dashed
line shows a ‘quasi-linear’ approximation (without large-
amplitude corrections). It is clear that those corrections are
relevant only in the region V � h. For other parts of the
I–V dependence as well as for the whole characteristics in the
in-line geometry, a quasi-linear approximation is satisfactory.

Similarly as in the in-line case we observe both hysteretic
behaviour of numerical solutions and segments of negative
conductivity in the analytical expressions. Now, however,
strongly nonlinear phenomena are confined to the region

5.0 5.5 6.0 6.5 7.0
5

6

7

8

9

10

0 2 4 6 8
0

2

4

6

8

10
(a)

(b)

V

I

V

I

Figure 5. The same as in figure 4 but for the overlap geometry. The
dashed line in figure 5(b) shows a ‘quasi-linear’ approximation.

(V � h). We can argue that the FF step position is strictly
dependent on the relation between a constant voltage (V ) and
a time-independent component of the magnetic field (φ0,x). In
other words, a resonance condition responsible for the FF step
can be formulated as V = φ0,x .

In the overlap geometry, φ0,x is a constant equal to h and
the FF step is clearly defined. Contrary to this, in the in-line
geometry φ0,x is x-dependent and consequently the resonance
condition is satisfied only locally (i.e. at different values of V

for different points along the junction). As a result, the main FF
step in the I–V characteristic is so broadened that it practically
disappears. Instead, we can see that the amplitudes of Fiske-
like steps are generally small and only weakly dependent on
the voltage.

6. Concluding remarks

In the present paper we have discussed the influence of self-
fields on the FF dynamics in a long Josephson junction.
In particular, we have focused on two essentially different
structures, in-line and overlap, for which the junction geometry
implies the distribution of self-fields and consequently
appropriate boundary conditions.

Extending the model outlined in [14, 15], we have
derived an approximate analytical solution of the sG equation,
consisting of the FF mode associated with two oppositely
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directed plasma waves. Next, the I–V characteristics have
been found using a simple perturbation scheme.

The agreement between analytical and numerical results is
excellent, which means that a simple approximation presented
here is able to reproduce correctly all the relevant features of
the solution. On the other hand, the comparison of results
obtained for in-line and overlap structures indicates important
differences in the FF dynamics. In particular, it turns out that
the relation between a constant voltage (V ) and a constant
(time-independent) magnetic field (φ0,x) within the junction is
crucial for the main FF step behaviour in the I–V characteristic.

In the overlap geometry, the (time-averaged) magnetic
field is independent of x and equal to h, which implies that the
main step is well defined at V = h. On the other hand, in the
in-line case, the time-averaged magnetic field is a function of
x. As a result, the main step is spread over the whole voltage
range and cannot be detected in the I–V characteristic.

It is known [7, 8] that the I–V dependence in the vicinity of
the main FF step is responsible for some practically important
parameters of the FF oscillator (such as linewidth). In this
context, the overlap geometry, exhibiting large segment of
negative differential conductivity, seems to be superior to
other structures. In general, however, the self-fields play an
important role in the fluxon dynamics and cannot be neglected
in the analysis of FF phenomena in long Josephson junctions.

Finally, it should be noted that the formalism presented
here is not restricted to the analysis of self-field effects. From
the formal point of view, the method is applicable to arbitrary
asymmetric boundary conditions (not only those related to the
in-line geometry). Thus, the approximate solution derived
in the present paper may be useful in the analysis of other
asymmetric structures, such as a Josephson junction immersed
in a non-uniform external magnetic field.
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