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Abstract
A general analysis of the feedback on the dynamo tearing modes (TMs) in a
cylindrical force-free reversed field pinch equipped with an active coils grid is
shown. A single resistive shell with thickness much smaller than its minor radius
is considered. Nevertheless, the radial field variation across the shell is taken
into account. The active coils are placed outside the shell. The model describes
the evolution of several TMs at the same time, taking into account the viscous
torque due to the fluid motion and the electromagnetic torque developed by the
image currents induced onto the shell, by the feedback currents and by the non-
linear interaction between different TMs. The feedback is shown to prevent the
TMs wall-locking: regardless of the amplitudes at the resonant surfaces, TMs
rotate with edge values very close to those they would have in the presence of
an ideal shell in the place of the resistive shell. The feedback performance and
efficiency dependence on the shell characteristics will be discussed.

1. Introduction

In a magnetic confinement fusion device the presence of a conductive wall (shell) surrounding
the plasma is important to guarantee magnetohydrodynamic (MHD) stability. However, the
finite penetration time of the radial magnetic field of any realistic shell determines potentially
dangerous MHD phenomena, among which is the wall-locking of tearing modes (TMs) [1, 2].
According to the no-slip condition [1], in the non-linear regime a m, n TM, with m and n

the poloidal and toroidal mode numbers, co-rotates with the ion fluid at the resonance surface.
This surface is defined by the condition q(rm,n) = m/n. The fluid velocity is modified there by
an electromagnetic torque produced by the interaction with the image currents induced into the
shell by the mode rotation. Wall-locking occurs when the TM amplitude at the resonant surface
exceeds a threshold, the so-called wall-locking threshold, above which the electromagnetic
braking torque is large enough to determine the transition from the high frequency rotation
related to the unperturbed plasma flow to a very low-frequency rotation, in which the mode
is practically arrested in the laboratory frame. When this occurs the stabilizing effect of the
shell is lost: the TM radial field penetrates the shell and its amplitude considerably increases.
Both in tokamaks and in reversed field pinches (RFPs) this determines severe plasma–wall
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interactions and can lead to premature termination of the discharges. For example, in the
RFX-mod RFP experiment [3] it is not possible to raise the plasma current above 500 kA and to
have discharges lasting more than 150 ms, with the only passive stabilization provided by a shell
whose characteristic penetration time, the shell time constant, is 0.1 s. We have to underline
that in RFX-mod the stabilizing effect of this shell on the TMs is reduced by the vacuum
vessel placed inside it, which acts like a far more resistive shell (3 ms time constant). This
additional resistive shell decreases to very low amplitudes the TMs wall-locking threshold [2].
RFX-mod has demonstrated the possibility of overcoming these limitations with the active
control of the edge radial field, made possible by a grid of active coils, placed outside the shell,
fully covering the torus. The first scheme tested the so-called intelligent shell [4], in which
the coils are coupled in a feedback scheme with the measurements provided by an identical
grid of radial field sensors, improved the plasma performances by preventing the radial field
penetration of the shell: besides a complete suppression of the resistive wall modes [5], the
TMs edge amplitude was kept at a low value. In the RFPs a certain level of amplitude for the
TMs in the non-linear regime is required by the dynamo mechanism in order to maintain the
reversed configuration [6, 7]. Therefore, these perturbations would exist even in the presence
of a perfectly conducting shell. This means that, in general, a feedback system cannot suppress
the non-linear dynamo TMs, but at best it can keep their edge amplitudes to low values. A recent
upgrade of the intelligent shell developed in RFX-mod, the clean-mode-control (CMC) [8, 9],
leads to a better control of the TMs. In fact, it fixes the TMs edge amplitudes at a value
lower than the intelligent shell. Even more importantly, it maintains the TMs into rotation for
amplitudes at the resonant surfaces that are well above the wall-locking thresholds, while with
the intelligent shell they were observed to be always stationary in the laboratory frame. Even if
these rotations occur at frequencies much smaller than the values related to the unperturbed fluid
motion, they are enough to guarantee a good spread of the power deposition onto the first wall.
The CMC is based on the real-time de-aliasing of the measurements from the high periodicity
sidebands produced by the discrete nature of the active coils: the feedback variables are not
the raw measurements as in the intelligent shell, but the poloidal and toroidal m, n Fourier
harmonics of the TMs, estimated as correctly as possible with the sideband subtraction. CMC
allows operations at 1.5 MA toroidal plasma current and discharge duration about 0.5 s [9].
The basic effects of the CMC, namely, TMs rotation and shell penetration avoidance, have
been already explained in [8] using an equilibrium model for a single TM based on the balance
between the electromagnetic torque, produced by the conductive structures and the feedback
coils surrounding the plasma, and the viscous torque due to the fluid motion. That model adopts
the standard TM formalism used in many other works (for example [2, 10]) and assumes the
multiple shells structures of RFX-mod. In this paper we present an upgrade of this equilibrium
model. In order to clarify the analysis, we treat an abstract case considering just one single
resistive shell, which therefore takes the place of the vacuum vessel also. The active coils
are assumed to be located outside it. Instead of the thin-shell approximation [11] used in [8],
a more accurate diffusion equation, which takes into account the shell thickness, is used to
describe the shell penetration [11]. The thin-shell relation can be applied in RFX-mod since,
due to the characteristics of the vacuum vessel, the TMs rotation frequencies in the presence
of feedback are not so large to invalidate this approximation. Nevertheless, in a general case
where higher frequencies are possible this approximation can fail. A more complete multi-
mode dynamic model is also developed. This model evolves the mode frequencies and edge
amplitudes of several TMs at the same time, taking into account not only the interaction with
the external structures but also the non-linear interaction between themselves. This interaction
is an important element of the TMs dynamic, since it determines the phase-locking [12], which
means that the different TMs superimpose to produce a toroidally localized coherent structure.
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This dynamic model can be viewed as a generalization to non-ideal boundary conditions, i.e.
resistive shell and feedback, of the phase-locking code presented in [12]. The dynamic model
evolves the TMs edge amplitudes, while the amplitudes at the resonant surface are imposed,
for example, from the experimental estimates. In fact, the available non-linear models for
the resonant surface amplitude evolution, based on Rutherford-like approaches [13], are valid
in single-helicity condition. Therefore, they are of uncertain applicability in the RFP case,
where the observed dynamic involves the energy exchange between different TMs. In this
case a simulation of the dynamo mechanism, which is beyond the scope of this work, would be
necessary. We will show that the transition from the high frequency rotation branch to a slower
branch still occurs also in the presence of CMC feedback. But, differently from the no-feedback
case, the TMs rotation frequencies are also significant in the slower branch. Moreover, their
edge amplitudes remain close to the values they would have in the presence of an ideal hell in
the place of the resistive shell. This means that the feedback makes the resistive shell to behave
close to an ideal shell, virtually for any value of the TM amplitudes at the resonant surfaces.
In this case wall-locking, in the sense of mode rotation stop and shell penetration, does not
occur any more. The paper is organized as follows. In section 2 the basic TM formalism is
presented. The dynamic model is discussed in section 3, and the stationary single-mode limit
of this model is presented in section 4. Section 5 shows the computations for a single TM
performed both with the dynamic and the equilibrium models: the feedback performances and
efficiency are analysed varying the gains and the shell time constant. The results so obtained
are confirmed by simulations performed with the dynamic model in the presence of many TMs
at the same time. The multi-mode simulations are presented in section 6. Final remarks are
given in section 7. The two appendices are devoted to more technical arguments. In appendix
A the formulae for the electromagnetic torque due to TMs non-linear interaction, which have
been obtained in [14] with ideal boundary conditions, are presented again in the case of a
resistive shell. Appendix B derives the formula for the voltages required by the feedback to
the coil amplifiers.

2. Basic TM formalism

Since neither toroidal nor finite pressure effects are expected to be crucial for the problem under
investigation, we describe the plasma equilibrium as a force-free cylindrical configuration, with
a periodicity length 2πR0 in the z direction, with R0 the plasma major radius: using a right-
handed co-ordinate system with a simulated toroidal angle (r, θ, φ ≡ z/R0) the force balance
condition for the equilibrium field B0(r) = (0, B0θ (r), B0φ(r)) is ∇ × B0 = µ0 J0 = σ(r)B0.
We assume that the plasma, whose minor radius is r = a, is surrounded by a single resistive
shell of thickness δw and inner and outer radii, respectively, rwi, rwe = rwi + δw. The shell is
assumed to be uniform; so the effects of gaps and holes are not considered in this analysis.
Outside the shell at the radius r = c we have a grid of active coils. The single-shell configuration
is the best case to investigate all the basic aspects of the problem. The generalization to the
multiple shell case will appear straightforward from the model equations we are going to
introduce.

2.1. TMs representation

The same convention of [12] for the Fourier harmonics of a generic perturbed quantity
X(r, θ, φ, t) = ∑

m,n∈Z xm,n(r, t) ei(mθ−nφ) is adopted. In the plasma and vacuum regions
it is a standard procedure to represent the magnetic perturbation associated to a m, n TM in
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Figure 1. Layout and Newcomb’s solutions splitting for each m, n mode.

terms of the mode eigenfunction

ψm,n(r, t) ≡ −i r bm,n
r (r, t) (1)

using the linearized ideal-MHD force balance equation. This leads to a second-order ordinary
differential equation in r for ψm,n, the so-called Newcomb’s equation [15], shown in formula
(A.17) of appendix A. In appendix A an equation with non-linear correction terms is also
obtained (formula (A.12)), but it is not used to compute the radial profile of the perturbations,
rather to derive analytical formulae which express the electromagnetic torque produced by the
TMs non-linear interaction. Newcomb’s equation for a m, n mode is singular at the resonant
surfaces rm,n. Likewise the solution must be interrupted into the shell region [rwi, rwe] and
in correspondence to the active coils radius. For sake of simplicity the finite thickness of the
coils is neglected. A standard representation is to split the Newcomb’s equation solution into
the sum of the different contributions obtained in the separate radial regions delimited by the
magnetic axis, the resonant surface, the shell and the active coils, as shown in figure 1 [1, 8].
The continuity conditions at the resonant surface, at the coil radius and the regularity for r → 0
and r → +∞ are imposed:

ψm,n(r, t) = �m,n
s (t) ψ̂m,n

s (r) + �
m,n
wi (t) ψ̂

m,n
wi (r) + �m,n

we (t) ψ̂m,n
we (r) + �m,n

c (t) ψ̂m,n
c (r);

r /∈ [rwi, rwe]. (2)

Expression (2) is not considered inside the shell region. The complex quantities
�m,n

s (t), �
m,n
wi (t), �m,n

we (t), �m,n
c (t) define the amplitudes and phases of the mode at the

resonant surface, at the shell inner and outer radii and at the active coils, respectively;
the functions ψ̂m,n

s (r), ψ̂
m,n
wi (r), ψ̂m,n

we (r), ψ̂m,n
c (r) form a real solution basis, completely

determined once the equilibrium has been specified. In particular, ψ̂m,n
s (r) is the real solution

for the Newcomb’s equation defined in the interval [0, rwi], well behaved for r → 0 (it goes
like r |m| for m �= 0 and r2 for m = 0), satisfying ψ̂m,n

s (rm,n) = 1 and ψ̂m,n
s (rwi) = 0;

ψ̂
m,n
wi (r) is the real solution defined in the interval [rm,n, rwi], satisfying ψ̂

m,n
wi (rwi) = 1,

ψ̂m,n
we (rm,n) = 0; ψ̂m,n

we (r) is the real solution defined in the interval [rwe, c] satisfying
ψ̂m,n

we (rwe) = 1, ψ̂m,n
we (c) = 0; ψ̂m,n

c (r) is the real solution defined for r > rwe, satisfying
ψ̂m,n

c (c) = 1, ψ̂m,n
c (rwe) = 0 and regular for r → +∞. In general, the radial derivative of

the solution (2) has jumps across the resonant surface and the coil radius. These jumps are
associated with the helical current sheet flowing at the resonant surface, related to the presence
of a magnetic island chain, and to the coils currents, respectively. The jump at the resonant
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surface and at the coils can be represented by

��m,n
s ≡ r

∂

∂r
ψm,n

∣∣∣∣
rm,n+

rm,n−
= �m,n

s Em,n
s + �

m,n
wi Em,n

ws , (3)

��m,n
c ≡ r

∂

∂r
ψm,n

∣∣∣∣
rc+

rc−
= �m,n

we Em,n
wc + �m,n

c Em,n
c , (4)

having defined the following quantities derived by the real solution basis:

Em,n
s ≡ r

d

dr
ψ̂m,n

s

∣∣∣∣
rm,n+

rm,n−
; Em,n

ws ≡ r
d

dr
ψ̂

m,n
wi

∣∣∣∣
rm,n+

; Em,n
wc ≡ −r

d

dr
ψ̂m,n

we

∣∣∣∣
c−

;

Em,n
c ≡ r

d

dr
ψ̂m,n

c

∣∣∣∣
rc+

rc−
. (5)

Likewise, we define these further quantities, which will be used in the following:

E
m,n
wi ≡ − r

d

dr
ψ̂

m,n
wi

∣∣∣∣
rwi−

; Em,n
we ≡ r

d

dr
ψ̂m,n

we

∣∣∣∣
rwe+

;

Em,n
sw ≡ − r

d

dr
ψ̂m,n

s

∣∣∣∣
rwi−

; Em,n
cw ≡ r

d

dr
ψ̂m,n

c

∣∣∣∣
rwe+

.

(6)

2.2. Electromagnetic torque

As discussed in appendix A, the helical current sheet flowing at a m, n resonant surface
allows the formation of a dirac-like angular integrated electromagnetic torque δT

m,n
EM,φδ

(r − rm,n), δT
m,n

EM,θ δ(r − rm,n), where the poloidal and toroidal components stand in the ratio
δT

m,n
EM,θ = −(m/n)δT

m,n
EM,φ [1]. Ideal MHD would not allow such a torque in other regions of the

plasma. The localized torque is due to two kinds of interactions: δT m,n
EM,φ = δT

m,n
EM,φ,1 +δT

m,n
EM,φ,2.

The first, which has already been considered in [8], involves the m, n radial field and the m, n

image current induced into the resistive shell. Both quantities are affected by the m, n coils
current harmonic of the feedback. As shown in appendix A this contribution is quantified by
an expression involving �m,n

s (t), �
m,n
wi (t) only (see (A.38)):

δT
m,n

EM,φ,1 = 8π2R0 n

µ0

Em,n
ws

Hm,n(rm,n)
Im[�m,n

wi (�m,n
s )∗]; Hm,n(r) = m2 + n2(r/R0)

2. (7)

The feedback enters in (7), since, as will be shown later, it modifies the ratio �
m,n
wi /�m,n

s (see
formula (40)). The second is due to the non-linear interaction between TMs with different
helicities. As shown in appendix A this is quantified by the expression (see equation (A.38))

δT
m,n

EM,φ,2 = 8π2R0n

µ0

∑
m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)

∑
i,j,k∈{s,wi}

Im[�m,n
i (�

m1,n1
j )∗(�m2,n2

k )∗]

· 
m,n
m1,n1,m2,n2

(i, j, k). (8)

The real coefficients 
 are integrals of expressions containing triple products of the real
Newcomb’s solutions ψ̂s(r), ψ̂wi(r) for every mode involved in the non-linear interaction
(see (A.39), (A.40)). Expression (8) generalizes to the resistive shell case the formula derived
in [14] under the hypothesis of ideal–shell boundary condition (�wi = 0): in this case only the
terms i = j = k = s would be present in (8) and the non-linear interaction would represent
a pure internal plasma force. Instead, since in the resistive shell case both �s(t), �wi(t)

are present for every mode involved in the non-linear interaction, the torque (8) includes a
component due to the external forces related to the image currents into the shell.

5
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3. The dynamic model

To obtain the time evolutions of �m,n
s (t), �m,n

wi (t), �m,n
we (t), �m,n

c (t) a dynamic model has been
developed. This model, besides the formulae introduced in the previous paragraph, includes

(1) the motion equation for the plasma flow, which is necessary to describe the evolution of
the TMs phases at their resonant surfaces; in fact, the no-slip condition [1], in which a
non-linear TM co-rotates with the ion fluid at the resonant surface, is assumed;

(2) the assumption for the TM amplitudes evolution at their resonant surfaces;
(3) the equation describing the radial field diffusion into the shell region;
(4) the equation relating the TM radial field and the current flowing into the active coils;
(5) the feedback law and the model for the coils power supply.

Now we discuss these equations in detail.

3.1. Equations of fluid motion

The electromagnetic torques, localized at the various resonant surfaces, modify the unperturbed
plasma velocity profile, opposed in this action by the viscous torque. These competing effects
are formalized in the single-fluid MHD motion equations for the toroidal and poloidal flux-
surface averaged angular velocities �φ(r, t) and �θ(r, t) [12]:

ρ
∂�φ

∂t
= 1

r

∂

∂r

(
µr

∂

∂r
�φ

)
+ Sφ +

∑
m ∈ Z
n > 0

δT
m,n

EM,φ

4π2rR3
0

δ(r − rm,n), (9)

ρ
∂�θ

∂t
= 1

r3

∂

∂r

(
µr3 ∂

∂r
�θ

)
− ρ

τD
�θ + Sθ +

∑
m ∈ Z
n > 0

δT
m,n

EM,θ

4π2r3R0
δ(r − rm,n) = 0. (10)

Here µ is the plasma perpendicular viscosity, ρ is the mass density, τD is the poloidal flow
damping time and Sφ , Sθ are phenomenological momentum source densities: for the sake
of simplicity we consider all these quantities to be constant with r . The velocity boundary
conditions are assumed to be

∂�φ(0, t)

∂r
= ∂�θ(0, t)

∂r
= �φ(a, t) = �θ(a, t) = 0. (11)

The summation in (9) and (10) runs over the resonant surfaces, so only the positive n are
considered: the contributions of both the complex conjugate harmonics (m, n), (−m, −n) for a
given resonant surface are included in the electromagnetic torque expressions (7) and (8). The
toroidal �φ0(r) and poloidal �θ0(r) angular velocities in the unperturbed state are obtained
from (9) and (10) at steady state (∂/∂t = 0) discarding the electromagnetic torques. The
solutions satisfying the boundary conditions (11) are

�φ0(r) = Sφ

4

τV

ρ

(
1 − r2

a2

)
; �θ0(r) = Sθ

τD

ρ


1 − a

r

I1

(√
τV

τD

r

a

)

I1

(√
τV

τD

)

 . (12)

Here τV = ρa2/µ is the viscous diffusion time. Following [12], the partial differential
equations (9) and (10), with the boundary conditions (11), can be reduced into a system of

6



Plasma Phys. Control. Fusion 51 (2009) 015006 P Zanca

ordinary differential equations, upon defining the following set of velocity eigenfunctions and
eigenvalues:

d

dr

(
rµ

duj

dr

)
+ rρβjuj = 0; duj (0)

dr
= uj (a) = 0, (13)

d

dr

(
r3µ

dvj

dr

)
+ r3ργjvj = 0; dvj (0)

dr
= vj (a) = 0. (14)

From (13) one gets

uj (r) = CjJ0

( r

a
j0,j

)
; βj =

j 2
0,j

τV
, (15)

where j0,j is the j th positive zero of the Bessel function J0. Upon defining Cj =
(
∫ a

0 r(J0((r/a)j0,j ))
2 dr)−1/2 we satisfy the orthonormality relation∫ a

0
ruj (r)uk(r) dr = δj,k. (16)

From (14) we get

vj (r) = Ej

J1

( r

a
j1,j

)
r

; γj =
j 2

1,j

τV
, (17)

where j1,j is the j th positive zero of the Bessel function J1. Upon defining Ej =
(
∫ a

0 r(J1((r/a)j1,j ))
2 dr)−1/2 we satisfy the orthonormality relation∫ a

0
r3vj (r)vk(r) dr = δj,k. (18)

According to the Sturm–Liouville theory the eigenfunctions uj , vj form two complete sets, so
we can expand the toroidal and poloidal angular velocities as

�φ(r, t) =
∑

j=1,+∞
gj (t)uj (r); �θ(r, t) =

∑
j=1,+∞

fj (t)vj (r). (19)

Note that the boundary conditions (11) are automatically satisfied. Using the orthonormality
relations (16) and (18), the partial differential equations (9) and (10) simplify to a numerable
set of ordinary differential equations for the functions gj (t), fj (t):

ρ
dgj

dt
= −ρ

j 2
0,j

τV
gj + Sφ

∫ a

0
ruj (r) dr +

∑
m ∈ Z
n > 0

uj (rm,n)

4π2R3
0

[δT m,n
EM,φ,1 + δT

m,n
EM,φ,2]

j = 1, ..., jmax, (20)

ρ
dfj

dt
= −ρ

j 2
1,j

τV
fj − ρfj

τD
+ Sθ

∫ a

0
r3 vj (r) dr −

∑
m ∈ Z
n > 0

m

n

vj (rm,n)

4π2R0
[δT m,n

EM,φ,1 + δT
m,n

EM,φ,2]

j = 1, ..., jmax. (21)

For practical evaluations, the system (20) and (21) is truncated to a finite order jmax.
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3.2. Perturbations at the resonant surfaces

The dynamo TMs are assumed to be in the non-linear regime. Their amplitudes and phases at
the resonant surfaces are defined by

�m,n
s (t) = �

m,n
s0 (t)eiϕm,n(t). (22)

As explained in the introduction we do not model the amplitude evolution, so �
m,n
s0 (t) are

imposed (for example, from the experimental estimates). Instead, the phases are evolved with
the no-slip condition [1], according to which a TM co-rotates with the ion fluid at the resonant
surface:
dϕm,n

dt
= n�φ(rm,n, t) − m�θ(rm,n, t) =

∑
j=1,+∞

[ngj (t)uj (rm,n) − mfj(t)vj (rm,n)]. (23)

3.3. Perturbations inside the shell

Assuming δw � rwi, and neglecting the curvature terms, the evolution of the m, n perturbations
inside the shell are governed by the following parabolic equations [11]:

µ0σ
∂ψm,n

∂t
= ∂2ψm,n

∂r2
; r ∈ [rwi, rwe], (24)

where σ is the shell conductivity. The shell time constant is τw = µ0rwiδwσ . Equation (24) is
more general than the thin-shell dispersion relation τw (∂ψm,n/∂t)|rwi

= rwi (∂ψm,n/∂r)|rwe
rwi

,
often used in this kind of analysis [8, 10], which is valid only in the frequency range
δw/rwi � ω τw � rwi/δw , where there is virtually no radial variation of the perturbation
inside the shell. Equation (24) needs two boundary conditions at the shell inner and outer
radii. They are imposed on the radial derivative of the perturbations, matching the solution of
(24) to Newcomb’s equation solution. Making use of the definitions (6) we have

∂

∂r
ψm,n

∣∣∣∣
rwi

= − 1

rwi
(�m,n

s Em,n
sw + �

m,n
wi E

m,n
wi ); (25)

∂

∂r
ψm,n

∣∣∣∣
rwe

= 1

rwe
(�m,n

we Em,n
we + �m,n

c Em,n
cw ). (26)

3.4. Perturbations at the coils

The quantity �m,n
c (t) is expressed in terms of �m,n

we and the coils current m, n discrete Fourier
harmonic Im,n

c combining equation (4) with another expression for the derivative discontinuity
at the coils radius obtained from Ampere’s law [17]:

��m,n
c = Lm,nIm,n

c ; Im,n
c = 1

NM

∑
i = 1, M
j = 1, N

Ii,j e−i(mθi−nφj ),

Lm,n = iµ0H
m,n(c)

sin

(
n
�φ

2

)

n
�φ

2

sin

(
m

�θ

2

)

m
�θ

2

.

(27)

Here the active coils are supposed to be Nc-turn rectangular loops with poloidal and toroidal
extent �θ = 2π/M and �φ = 2π/N , respectively, forming a M(poloidal)×N (toroidal) grid
fully covering the torus. For sake of simplicity the finite thickness of the coils is neglected.
Ii,j is the total current flowing in the i, j coil, and the anticlockwise direction looking from
above is taken to be the positive versus.
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3.5. Feedback law and active coil power supply model

The dynamic model is closed by the equation for Im,n
c , which is obtained by prescribing

the feedback law and modelling the coils power supply. The feedback law determines the
reference current harmonics I

m,n
ref : here we use the CMC scheme, implemented as a standard

P.D. controller applied to the m, n radial field harmonics at a given control radius rf between the
plasma edge and the inner shell surface a � rf � rwi. These harmonics are possibly obtained
by extrapolating the measurements as described in [8]. As discussed in the introduction, this
is the feedback scheme which in RFX-mod has been proven to be more efficient on TMs. If
Km,n

p , K
m,n
d are, respectively, the proportional and derivative gains applied to the m, n mode,

the CMC law is

I
m,n
ref = rf

µ0

(
Km,n

p wm,n
r + K

m,n
d

d

dt
wm,n

r

)
. (28)

To be realistic as much as possible we have modelled the measured radial field harmonics as
a filtered version of the true ones:

τd
d

dt
wm,n

r + wm,n
r = bm,n

r (rf , t), (29)

bm,n
r (rf , t) = i

rf
[�m,n

s (t)ψ̂m,n
s (rf) + �

m,n
wi (t)ψ̂

m,n
wi (rf)]. (30)

The parameter τd quantifies both the filters that must be applied in order to avoid the aliasing
in the frequency domain during the digital acquisition of the signals, and the delay introduced by
the feedback operations, for example, the real-time Fourier analysis. In this model we imagine
that dwr/dt is the signal acquired by the feedback, while wr is obtained by integration (this
is different from RFX-mod, where the feedback system acquires wr and obtains dwr/dt by
a numerical derivative which requires an additional filter [8]). In (28) the gains are negative
(or have a negative real part if they are complex), so the radial field generated by the coils,
which is in-phase with the current, opposes the measured one. We neglect the integral control
in (28), since it has not proven to be effective for the TMs control in RFX-mod [8, 9]. The
reason is that TMs tends to rotate, so the integral control introduces an undesirable delay.
In this formulation we assume that the m, n Fourier harmonics can be correctly evaluated,
possibly de-aliasing the measurements from the high periodicity sidebands (m + lM, n + pN),
l, p ∈ Z produced by the discrete nature of the active coils. The aliasing effect can be reduced
to negligible levels if the sensors and the active coils have different periodicities in poloidal
and toroidal directions. If the periodicity is identical, [8] has shown that it is possible to give a
good estimate of the coil sidebands using the currents measurements and to subtract them from
the radial field measurements in real time. The sidebands do not correspond to any unstable
plasma mode if M , N are large enough (condition assumed in this model). Therefore, they
are not expected to interact significantly with the dynamo TMs, and they are not considered
in this model. Due to the unavoidable delay of the coils power supplies, the actual current
harmonics in the coils Im,n

c do not coincide with the reference harmonics I
m,n
ref . In RFX-mod,

the relationship between the two quantities can be modelled by a one-pole filter law [18]:

τc
d

dt
Im,n

c + Im,n
c = I

m,n
ref . (31)

In fact the active coils power supplies have an internal feedback controller that can be
represented by the scheme reported in figure 2: K denotes a proportional gain, V m,n

c is the
discrete Fourier transform of the voltage applied to the coil and G(iω) is the transfer function
between voltage and current, which can be approximated by a one-pole filter law. Therefore,
the global transfer function between Im,n

c and I
m,n
ref is still a one-pole filter law, with the pole

τc depending on the gain K . Equation (31) will be adopted by our model.

9
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Figure 2. Scheme of the global transfer function of the active coils power supply in RFX-mod.

3.6. Feedback performances and efficiency

In an RFP the dynamo TMs would exist even with an ideal shell at the plasma edge r = a. While
a certain level of radial field at the resonant surface is required by the dynamo mechanism, the
feedback should try to mimic an ideal shell placed at r = a reducing as small as possible the
radial field there. Therefore, we take the absolute value of the ratio between the radial field
amplitudes at the plasma edge and at the resonant surface b̂m,n

a ≡ |bm,n
r (a)/bm,n

r (rm,n)| as a
merit parameter to quantify the feedback performances. An efficient feedback should keep at a
low value the edge radial field, without demanding too much power for the coil amplifiers. The
power is obtained combining the coils current and voltages. The coils voltages are computed
with an equation derived in appendix B, where it is shown that the m, n discrete Fourier
harmonics (defined in (27)) of the currents and the voltages are related by

V m,n
c = Rc

Nc
Im,n

c + lm,n d

dt
Im,n

c − 4R0Nc

mn
sin

(
n
�φ

2

)
sin

(
m

�θ

2

)
iEm,n

wc

E
m,n
c

d

dt
�m,n

we . (32)

Here lm,n are effective inductances and Rc is the resistance of the coil. The second and third
terms provide the time variation of the radial flux enclosed by the coils. The inductances
lm,n also contain the contribution of the coil generated sidebands evaluated using the vacuum
approximation.

3.7. Summary

In conclusions, our dynamic model is a system of parabolic PDE (24) for every mode
considered, with boundary conditions (25) and (26), coupled with algebraic relations (4) and
(27), with a system of ODE represented by equations (7), (8), (20)–(23), (28)–(31) and with
relation (32). It is a non-linear model since both expressions (7) and (8) for the electromagnetic
torque are non-linear. It is solved using a FORTRAN 90 program, which implements the NAG
routine ‘nag pde parab 1d fd’. The real quantities (5) and (6) are obtained solving Newcomb’s
equation (A17) for a given equilibrium using the NAG routine ‘nag rk interval’. The
outputs are the variables gj , fj , j = 1, . . . , jmax, and ϕm,n, �

m,n
wi , �m,n

we , �m,n
c Im,n

c , wm,n
r , V m,n

c
for every mode considered. The system of equations is initialized with zero magnetic
perturbations, coils currents, fluid velocity and giving random phases for the modes. The
momentum sources in equation (20) and (21) are determined from relationship (12) with the
unperturbed velocity profiles, providing a value for �φ0(r) and �θ0(r) at a given radius.

4. The stationary single-mode model

It is also interesting to study the problem in a simpler situation, without the non-linear
interaction between different TMs, by considering a single m, n TM. If its amplitude at the
resonant surface �

m,n
s0 has a constant value, the solution of the previous system of equations

approaches, in general, a stationary state in which the fluid velocity profile is constant, the
mode rotates with constant frequency dϕm,n/dt = ω and the time dependence reduces to eiωt

for all the quantities �
m,n
wi , �m,n

we , �m,n
c Im,n

c , wm,n
r , V m,n

c . In this case the model provides a

10
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non-linear algebraic equation for the equilibrium frequency ω, which we are going to derive.
This equation has already been obtained in [8] using the thin-shell relation. Here we present
an upgraded version, since we are considering the more accurate diffusion equation (24). This
model provides a useful comparison with the dynamic model. In stationary conditions, in the
presence of a single mode, the motion equations (9) and (10) reduce to

1

r

d

dr

(
µr

d

dr
��φ

)
+

δT
m,n

EM,φ,1

4π2rR3
0

δ(r − rm,n) = 0 , (33)

1

r3

d

dr

(
µr3 d

dr
��θ

)
− ρ

τD
��θ − m

n

δT
m,n

EM,φ,1

4π2r3R0
δ(r − rm,n) = 0, (34)

having defined as ��φ(r) ≡ �φ(r) − �φ0(r), ��θ(r) ≡ �θ(r) − �θ0(r) the difference
between the velocity profiles in the final stationary state and the unperturbed profiles; (33) and
(34) are solved in the two regions 0 < r < rm,n, rm,n < r < a, with the boundary conditions
��′

φ(0) = ��′
θ (0) = ��φ(a) = ��θ(a) = 0 and imposing the continuity of the solution

at r = rm,n. The discontinuities of the radial derivative ��′
φ , ��′

θ across the resonant surface
produce the angular integrated viscous torques, which balance the electromagnetic torque. It is
possible to show that

− 4π2R3
0µ��φ(rm,n)

/
ln

(
a

rm,n

)
+ δT

m,n
EM,φ,1 = 0, (35)

4π2R0r
2
m,nµ��θ(rm,n) F

(√
τV

τD

)
+

m

n
δT

m,n
EM,φ,1 = 0, (36)

where

F(x) = I1(x)

I1(x(rm,n/a))[K1(x(rm,n/a))I1(x) − I1(x(rm,n/a))K1(x)]

is a positive function. At the stationary state the no-slip condition (23) is ω = n�φ(rm,n) −
m�θ(rm,n), and defining the unperturbed frequency ω0 ≡ n�φ0(rm,n) − m�θ0(rm,n), the
combination of (7), (35) and (36) provides

2
m,nEm,n
ws

r2
m,nH

m,n(rm,n)
Im[�m,n

wi (�m,n
s )∗] + ω0 − ω = 0, (37)

where 
m,n = (µ0µ)−1 · [n2(rm,n/R0)
2 ln(a/rm,n) + m2F(

√
τV/τD)−1]. To get the desired

equation, we have to express �
m,n
wi in terms of �m,n

s and ω in (37). Being the time dependence
eiωt , the resistive shell diffusion equation (24) becomes

∂2ψm,n

∂r2
=

(
2γ

δw

)2

ψm,n; γ = 1

2

(
iωτwδw

rwi

)1/2

; r ∈ [rwi, rwe] (38)

with solution

ψm,n = �we + �wi

2 cosh(γ )
cosh

[(
2γ

δw

)
(r − rw)

]
+

�we − �wi

2 sinh(γ )
sinh

[(
2γ

δw

)
(r − rw)

]
;

rw = rwi + rwe

2
. (39)

Inserting (39) in the l.h.s of the boundary conditions (25) and (26), and combining the ensuing
equations with (4), (27)–(31) , we get

�
m,n
wi = Bm,n(ω, Km,n

p , K
m,n
d )�m,n

s , (40)

11
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B(ω, Kp, Kd) =
[
EswEc +

rwi

rwe

Ecwχs(ω, Kp, Kd)

cosh(2γ )
+

δw

rwe

tanh(2γ )

2γ
Esw(EcwEwc − EcEwe)

]

·
[

iωτw
tanh(2γ )

2γ
Ec − Gwc − rwi

rwe

Ecwχwi(ω, Kp, Kd)

cosh(2γ )

+
δw

rwe

tanh(2γ )

2γ
Ewi(EcEwe − EcwEwc)

]−1

, (41)

χm,n
s = iLm,nψ̂m,n

s (rf)

µ0

Km,n
p + iωK

m,n
d

(1 + iωτc)(1 + iωτd)
,

χ
m,n
wi = iLm,nψ̂

m,n
wi (rf)

µ0

Km,n
p + iωK

m,n
d

(1 + iωτc)(1 + iωτd)
,

(42)

Gm,n
wc =

(
E

m,n
wi +

rwi

rwe
Em,n

we

)
Em,n

c − rwi

rwe
Em,n

cw Em,n
wc . (43)

In (41) we have dropped the m, n superscript for ease of notation. Inserting (40) in (37), the
torque balance relation becomes the following non-linear equation for ω:

T (ω) ≡ 1

2

(
2�

m,n
s0

rm,n

)2 
m,nEm,n
ws

Hm,n(rm,n)
Im[Bm,n(ω, Km,n

p , K
m,n
d )] + ω0 − ω = 0;

∂T /∂ω|T =0 < 0. (44)

The constraint of the derivative of T (ω) selects the stable equilibrium solutions; 2 × �s0

represents the global mode amplitude at the resonant surface, taking into account the complex
conjugate contribution also. Once this amplitude, the feedback gains and the plasma flow
parameters µ, τD, ρ, ω0 are set, equation (44) provides the equilibrium frequency ω.
Newcomb’s solution (2) is then fully determined, since not only �

m,n
wi but also �m,n

we , �m,n
c can

be obtained with relations similar to (40). Equation (44) is solved using a Fortran 90 program,
which implements the NAG routine ‘nag nlin eqn sol’.

5. Single-mode analysis

To understand the basic aspect of the feedback on TMs we start considering just one single m, n

mode, using both the stationary model and the dynamic model. In this case the dynamic model
is solved with δT

m,n
EM,φ,1 as the only contribution to the electromagnetic torque in equations (20)

and (21). This section will be devoted to the computation for the m = 1, n = 7 TM, which in
RFX-mod is the innermost resonant and the most important one in the high current regime.

5.1. Layout, fluid and equilibrium parameters

These preliminary considerations are valid both for the single-mode and the multi-mode
analyses, which will be presented in section 6. We take the same geometrical parameter
and the active coils grid characteristic of RFX-mod: a = 0.459 ms, R0 = 2 m, c = 0.5815 m,
M = 4, N = 48, Nc = 60, Rc = 0.8 �. In equation (31) we take the RFX-mod value
for the pole of the coils power supplies transfer function, obtained after the optimization of
the relative internal feedback loop [18]: τc = 0.5 ms. In equation (29) the parameter τd is
assumed to be a fraction of τc: τd = 0.1 ms. It does not seem reasonable to impose a smaller
value, since τd also incorporates the delay introduced by the feedback real-time computations.

12
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In RFX-mod an Inconel shell (the vacuum vessel) with τw = 3 ms is placed just behind
the graphite tiles at rwi = 0.475 m, and a copper shell with τw = 0.1 s and δw = 3 mm is
placed outside it at rwi = 0.5125 m. Instead, in this analysis a single shell is considered.
If not otherwise specified, this shell is assumed to be placed just behind the graphite tiles
at rwi = 0.475 m. We do not perform a complete scan of the two parameters, conductivity
and thickness, which characterize the shell. Rather, we perform a scan with the shell time
constant according to the following considerations. Copper is the most conductive metal
available to build a shell. Therefore to have τw � 0.1 s we take a copper shell with thickness
δw = τw(s)/0.1 × 3 mm, with the limit value τw = 0.3 s, since equation (24) holds only for
δw � rwi. Instead, to have τw < 0.1 s we keep δw = 3 mm, since reducing further the thickness
of a single shell seems hardly feasible from the mechanical point of view, and we imagine
that the shell is made of a material less conductive than copper. The fluid and equilibrium
parameters are imposed from the RFX-mod experiment whenever possible and fixed with
sensible hypothesis in the absence of reliable determinations. The magnetic equilibrium
(α = 6, θ0 = 1.44 for the current profile parametrization according to equation (A.1) in
appendix A; Ip = 1.45 MA for the toroidal plasma current) is derived from a typical high
current shot of RFX-mod (#23810). An important fluid parameter is the plasma perpendicular
viscosity. To our knowledge, the viscosity in an RFP has been measured in MST only,
perturbing the plasma velocity profile by a biased electrode [19]. From the flow damping
the perpendicular viscosity was inferred to be anomalous: µ/ρ ≈ 50 m2 s−1. For RFX-mod
this value would provide a viscous diffusion time τV = ρa2/µ ≈ 4 ms. Taking into account the
similar geometrical dimensions of MST and RFX-mod, we assume τV = 4 ms. The viscosity
µ is determined taking for the electron particles density the value ne = 3 × 1019 m−3 of
the reference shot. Another unknown quantity in RFX-mod is the unperturbed flow velocity,
which in our model fixes the momentum sources via equations (12). In RFX-mod we have
measurements of some impurities velocity in the intermediate/external region of the plasma
(r/a > 0.6). In particular the CV toroidal velocity is considered to be representative of the
toroidal flow of the main ion [20]. However, these measurements cannot be taken as the
unperturbed velocity profile, since in RFX-mod the plasma flow is always modified by the fact
that the TMs are locked to the wall (in the absence of feedback) or rotating at a frequency
smaller than the unperturbed value (with feedback). Instead in MST, in which TMs for low
amplitudes can rotate at their natural frequencies, the unperturbed toroidal velocity of the CV
impurity ions has been measured to be about 15 Km s−1 at r/a ≈ 0.4 [19]. Therefore in our
computations we impose the value �φ0(a/2) = 1.5 × 104/R0(rad s−1) for the unperturbed
toroidal angular velocity at half plasma radius. Concerning the unperturbed poloidal velocity,
imposing �θ0(a/2) = 3500/(a/2)(rad s−1) and τD = τV, the final perturbed velocity profile,
computed by the dynamic model with the non-linear interaction between all the relevant TMs,
is compatible with the RFX-mod CV measurements mentioned above. This will be discussed
in section 6. Finally, the system of equations (20) and (21) is truncated with jmax = 50:
we have verified that increasing further the number of eigenfunctions uj , vj does not lead to
appreciable variations in the result.

5.2. Wall-locking avoidance

In figure 3 we show the dynamic model solution obtained with no feedback (Km,n
p = 0,

K
m,n
d = 0), for a τw = 0.1 s shell, imposing for the radial field amplitude at the resonant

surface bm,n
rs = �

m,n
s0 /rm,n a linear ramp from 0 up to 15 mT lasting 0.12 s: for every value of

brs the mode frequency and the ratio b̂m,n
a are reported. The mode frequency starts from zero

and reaches the value corresponding to the unperturbed velocity profile (ω0 = 44 970 rad s−1)
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Figure 3. Dynamic computation for the m = 1, n = 7 TM without feedback taking τw = 0.1 s:
brs ramps linearly from 0 to 15 mT in 0.12 s. The value of b̂m,n

a , with an ideal shell in the place of
the resistive shell, is also shown.

after a time τV. It decreases gradually while the mode amplitude increases, but when the latter
exceeds the wall-locking threshold, which is about brs ≈ 10 mT for the chosen value of τw,
the frequency drops at such low values that the mode is practically arrested in the laboratory
frame. While in the high frequency branch the shell behaves approximately like an ideal
shell, in the low frequency branch its stabilizing effect is lost, and the radial field penetrates it,
since the ratio b̂m,n

a increases departing from the ideal-shell value. The wall-locking threshold
dependence on τw is shown in figure 4. The numerical computation is performed with the
stationary model in the absence of feedback. Here this threshold is called the high–low bh–l

frequency threshold for reasons that will be clear in the following. The saturation of bh–l for
τw > 0.1 s agrees with the dependence (τw/δw)1/4 of the analytical formula derived in [2] in
the so-called thick-shell asymptotic regime (remember our assumption of a copper shell, i.e.
τw/δw = const for τw > 0.1 s). Numerical computations performed with both the dynamic
and the stationary models show that the feedback weakly affects the high–low frequency
threshold bh–l. Nevertheless, the feedback radically changes the properties of the solution
when the amplitude is above bh–l. This is shown in the next two figures 5 and 6 considering
three feedback simulations with the dynamic model for the same brs ramp of figure 3: the
simulations differ for the shell time constant τw or the control radius rf according to the
figure captions. The symbols superimposed to the three curves are the equilibrium solutions
computed by the stationary model for the same values of brs. The gains set in the three cases
are chosen after a scan, which will be discussed later. Note that the imposed derivative gain
Kd = τcKp is the value which compensates in equation (28) the pole in the coils transfer
function (31). Figure 5 shows that when the amplitude is above bh–l there is still the transition
from the high to the low-frequency branch. But, in the presence of feedback the mode rotation
is also significant in the low-frequency branch. Moreover, figure 6 shows that b̂m,n

a remains
close to the ideal-shell value, even in the low-frequency branch of the solution. Note that there
is very good agreement between the stationary computation and the dynamic model solution.
The agreement is not perfect, due to the continuous variation of brs during the imposed ramp in
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Figure 4. High–low frequency threshold bh–l given by the stationary model in the case without
feedback. Note the logarithmic scale in the x-axis.

the dynamic computation. Nonetheless, this demonstrates that for a constant brs the feedback
determines a true equilibrium condition in which the mode rotates with constant frequency
and b̂m,n

a . In this case the wall-locking, in the sense of rotation stop and shell penetration for
amplitudes above bh–l, as shown in figure 3, is avoided. This is the reason for which we have
renamed the bh−l threshold. In figure 6 it can be noted that the dependence of b̂m,n

a on brs is
negligible even in the low-frequency branch. This is confirmed by further extending the brs

scan in the low-frequency branch as shown in figure 7. The conclusion is that the feedback
(for given value of the gains, control radius and shell characteristics) fixes not the absolute
value of the edge radial field, but the ratio b̂m,n

a . In other words, the feedback determines the
mode eigenfunction profile. Note that the feedback performances in terms of b̂m,n

a are better
in the τw = 0.1 s case than in the τw = 3 ms case: the time constant dependence will be further
investigated in section 5.5. Moving the feedback radius from rf = rwi to rf = a does not
appreciably improve the feedback performances. On the other hand, the control at rf = a is
less efficient, since the voltage and currents required to the coils are higher: this is shown in
figure 8 plotting the product |V m,n

c · Im,n
c |/Nc, which represents an estimate of the maximum

power required to the coils (in the power expression the voltage must multiply the current
flowing in each turn of the coil; this is the reason for dividing the total coils currents by Nc).
The feedback dependence on the control radius will be further investigated in section 5.4. Also
note that passing from τw = 0.1 s to τw = 3 ms with the same control radius rf = rwi makes
the feedback less efficient.

5.3. Gains dependence for the control radius at rf = rwi

We now want to study the feedback performance and efficiency dependence on the gains in
the low frequency branch keeping rf = rwi. The shell time constant is set at τw = 0.1 s. The
imposed mode amplitude at the resonant surface is brs(mT) = 12 × [1 − exp(−2000 × t (s))],
which mimics a fast exponential growth followed by a saturation at a value above bh–l. Figures 9
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Figure 5. Frequency solution for the m = 1, n = 7 TM in the presence of feedback, obtained with
both the dynamic and the stationary models. In the dynamic model brs ramps from 0 to 15 mT
in 0.12 s. Three cases are considered: (1) τw = 0.1 s, rf = rwi, Kp = −10 × 0.96 × π/rf ; (2)
τw = 0.1 s, rf = a, Kp = −2.25×0.96×π/rf ; (3) τw = 3 ms, rf = rwi, Kp = −2.4×0.96×π/rf .
In all these cases we take Kd = τcKp. Note the logarithmic scale in the y-axis.

and 10 show the final b̂m,n
a and |V m,n

c · Im,n
c |/Nc computed by the dynamic model after 30 ms

of simulation, performing a scan on the gains. An equilibrium is reached, since the condition
d2ϕ/dt2(dϕ/dt)−1τV � 1 is fulfilled at the end of the simulations. For a given Kd, the feedback
performance improves by increasing Kp up to an optimum range of values, above which b̂m,n

a

is not reduced any more, while the coils power considerably increases. This property has
already been pointed out in [8] and is verified in the RFX-mod experiment. The reason is that
the feedback not only counteracts the edge TM amplitude, but also determines its equilibrium
frequency as a consequence of the electromagnetic torque. When Kp exceeds the optimum
range of values, the TM begins to rotate too fast, and the feedback, which is affected by the
unavoidable delays τc, τd, cannot reduce the edge amplitude any more. The faster rotation,
if not followed by a reduction of b̂m,n

a , requires higher power from the coils. A similar trend
is seen for the derivative gain: the small amount of Kd = τcKp which compensates the pole
in the current transfer function (see equations (28), (31)), is beneficial both for b̂m,n

a and for
the efficiency, while any further increase risks raising significantly the power requested to the
coils. We can say that the optimum choice (at least for τw = 0.1 s) could be Kd = τcKp with
−12 × 0.96 × π/rwi < Kp < −10 × 0.96 × π/rwi. Note that in the case Kd = 3τcKp two
points of the Kp scan are not shown: for the case Kp = −9 × 0.96 × π/rwi the equilibrium
condition is not fulfilled yet after 30 ms and some more time would be requested; instead,
in the case Kp = −8.25 × 0.96 × π/rwi the solution of the dynamic model is unstable and
never approaches the equilibrium condition. We have in fact verified that, raising Kp or Kd too
much above the optimal range, the dynamic model could not reach the equilibrium condition
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Figure 6. For the same solutions of figure 5 the ratio b̂m,n
a is given. The straight line represents the

value in the case of an ideal shell in place of the resistive shell.

Figure 7. Computation of b̂m,n
a for the m = 1, n = 7 TM with the stationary model. This plot

extends the points reported in figure 6 for the first simulation in the low-frequency branch.

d2ϕ/dt2(dϕ/dt)−1τV � 1, showing oscillations or divergent trends both in the frequency
and b̂m,n

a . This behaviour may be related to the instability at high gains discussed in [21].
Nevertheless, we would stress that these instabilities occur for gain values away from the
region of interest where the feedback has the optimum performance and efficiency. These
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Figure 8. For the same solutions of figure 5 an estimate of the maximum power required for the
coils.

Figure 9. b̂m,n
a for the m = 1 n = 7 TM obtained with the dynamic model after 30 ms computation.

The straight line represents the value in the case of an ideal shell in place of the resistive shell. The
control radius is rf = rwi. Note the logarithmic scale in the y-axis.

instabilities are not seen in the stationary model, which would predict equilibrium states for
every value of the gains. Moreover, the stationary model can have multiple solutions for a
given value of the gains, but only one of these equilibria can be reached by the dynamic model
starting from the adopted initial conditions. For this reason the stationary model should be
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Figure 10. Estimate of the coils maximum power for the same scan of figure 9.

Figure 11. Same scan of figure 9, with the control radius at rf = a. Note the logarithmic scale in
the y-axis.

considered with some care, since it may indicate equilibrium states which are not reachable
starting from physically meaningful initial conditions.

5.4. Gains dependence for the control radius at rf = a

Figures 11 and 12 repeat the gain scan shown in figures 9 and 10 with the control radius at
rf = a. As anticipated in section 5.2, the values for b̂m,n

a are not reduced while the coils power
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Figure 12. Estimate of the coils maximum power for the same scan of figure 11.

increases with respect to the feedback at rf = rwi. Therefore, with a simple P.D. controller, the
feedback cannot do better than what the shell does in the high frequency branch (or what an
ideal shell does) even with the control radius at rf = a: in figures 8 and 10 the b̂m,n

a are all above
the value that we would have with an ideal shell in place of the resistive shell. Consequently,
the feedback counteracts a larger radial field moving the control radius from rf = rwi to rf = a,
and the required power increases. The reason for the existence of a lower limit in b̂m,n

a could be
related to the non-linear character of the electromagnetic torque (7). In fact we have verified
that, in principle, a feedback-linearization technique [23] could make b̂m,n

a arbitrarily small.
Feedback linearization means to cancel the non-linearity of the model equations by a suitable
feedback law, which can be also much involved; so the system of equations in the presence of
feedback becomes linear. The limit is that this technique is model dependent, and indeed we
have verified it only in a much simpler configuration with a shell described by the thin-shell
dispersion relation, and with τd = τc = 0 in relations (29) and (31). Its applicability in a
realistic case, including equation (24) and all the delays introduced by the coils amplifiers and
the measurements acquisition, is still to be investigated.

5.5. Shell time constant dependence

Under the assumptions discussed in section 5.1 for shell thickness and conductivity, figures 13
and 14 investigate the feedback efficiency dependence on τw, in the low-frequency branch. This
analysis is not expected to give the optimum shell for the feedback, since all possible values
of conductivity and thickness are not explored. Nevertheless, it highlights the fundamental
trends. The imposed mode amplitude at the resonant surface is the same as in figures 9–12,
and the control radius is set at rf = rwi. The τw scan is made for some Kp covering a large
range of values, keeping Kd = τcKp. The points represent again the final values after 30 ms
simulations with the dynamic model (the final equilibrium condition is fulfilled). For any Kp,
both b̂m,n

a and the coil power increase reducing τw too much. At the same time it is not necessary
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Figure 13. b̂m,n
a for the m = 1 n = 7 TM obtained with the dynamic model after 30 ms computation;

the Kp values are multiples of −0.96π/rwi. The control radius is at rf = rwi. The straight line
represents the value in the case of an ideal shell in place of the resistive shell. Note the logarithmic
scale in both axes.

Figure 14. Estimate of the coils maximum power for the same scan of figure 13.

to have a very long time constant to ensure a good feedback: in fact, both b̂m,n
a and the coil

power show saturation, depending on Kp, with τw. An optimum range of values can be seen
around τw ∼ 100 ms. Maybe these values are the best compromise between the requirements
of having a shell that guarantees a good passive stabilization and, at the same time, does not
hinder the feedback action. The analysis indicates that for too low τw the dominant effect is
the poor shell passive stabilization. The trends of figures 13 and 14 are confirmed repeating
the computation with a copper shell for every value of τw, that is decreasing the shell thickness
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below 3 mm for τw < 100 ms.

6. Multi-mode analysis

The previous single-mode analysis is important to point out the main aspects of the TMs
feedback, but incomplete for an RFP, since the multi-mode non-linear interaction is a crucial
element of the dynamic. In this section we are going to show some simulations performed
with the dynamic model including the electromagnetic torque produced by the non-linear
interaction between different TMs, represented by formula (8). Since in this case the run time
of the simulations increases considerably, we are going to show a smaller number of examples
with respect to the previous section. The results will confirm the previous single-mode analysis
results.

6.1. Preliminary considerations

The RFP dynamo modes are the internally resonant m = 1 TMs, which in RFX-mod have
n � 7. A secondary branch of m = 0 modes with a large n spectrum resonating at the reversal
surface (q = 0) is important for the non-linear interaction with m = 1. In fact, in the non-linear
component of the electromagnetic torque (8) we have triplets made by two m = 1 TMs with
different n and one m = 0 mode. We do not consider triplets of m = 0 modes, because this
kind of coupling, being a self-interaction between m = 0 modes, would give zero contribution
in equation (20) to the total electromagnetic torque at the reversal surface integrated over the
angular co-ordinates

∑
n>0 δT

0,n
EM,φ , and therefore to the flux-surface averaged angular velocity

(the poloidal component of the torque is zero for m = 0 modes as seen in equation (21)).
The superimposition of the m = 0 modes determines an island-like structure at the reversal
surface, which is dragged by the local average toroidal velocity. This effect is described by
the phase evolution equation (23) for m = 0 modes. However, the structure can also change
toroidal shape due to the m = 0 self-interaction. This effect is not related to the modification
of the average velocity at the reversal surface and cannot be described by the model considered
here. Nevertheless, it should take into account in the phase evolution of the m = 0 modes.
The problem has been discussed in [12], where it has been shown that the minimization in
the sense of the L2-norm of the electromagnetic torque angular function

∮
[T m=0

EM,φ(φ)]
2

dφ

produced by the m = 0 self-interaction in the vicinity of the reversal surface requires a specific
phase-locking of m = 0 modes:

ϕ0,n = nφ0 − �0; �0 = ±π/2. (45)

Here φ0 and �0 determine, respectively, the toroidal location and the shape of the island-like
m = 0 structure. The minimization of the electromagnetic torque is a plausible condition
that facilitates the balance with the other terms, such as inertia and viscosity, in the equation
of motion. A statistical analysis carried out on the RFX data has shown the preference for
the value �0 = π/2 [12]. A similar analysis has not been done in RFX-mod as yet, but
the observations confirm that the m = 0 locking is not changed. We take into account the
m = 0 self-interaction imposing the phase-locking relation (45) with �0 = π/2 as initial
condition in equations (23) for ϕ0,n. In this case, relation (45) will be maintained during
the evolution with a time dependent φ0 dragged by the average fluid velocity at the reversal
surface: dφ0/dt = ∑

j=1,jmax
gj (t) uj (r0,1). The assumption that the m = 0 modes remain

always phase-locked according to (45) is not exactly verified in the experimental case, but at
the moment we do not have a better model for the m = 0 phase evolution. At t = 0 the values
of φ0 and ϕ1,n are set at random. We will show some examples considering the evolution of
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Figure 15. Example of the mode amplitude at the resonant surface estimated on the shot 23810.
They are imposed in the multi-mode simulations with a factor [1 − exp(−2000 × t)] to ensure the
vanishing initial condition. Note the logarithmic scale in the y-axis.

the modes m = 1, n = 7–19 non-linearly interacting with the modes m = 0, n = 1–12. The
amplitudes at the resonant surfaces �

m,n
s0 (t) are imposed according to the values estimated from

the edge magnetic data using a Newcomb’s equation solver [16] for the adopted RFX-mod
reference shot. Since we are considering a passive boundary different from the RFX-mod
one, these amplitudes must be taken only to be indicative of a high current RFP regime. In
figure 15 they are shown for three modes. The m = 1, n = 7, which is much larger than the
others, is called the dominant mode. The other modes are called the secondary modes. Note
that the m = 0 amplitude is very low. This is an example of the quasi-single-helicity state
(QSH), which RFX-mod exhibits in the high plasma current regime [9, 22]. A sawtoothing
behaviour, with an energy transfer between the dominant and the secondary modes, is also
seen: when the dominant modes goes down, the secondary have a sudden increase (vertical
line 1) and vice versa (vertical line 2). The feedback performance will be characterized not
only by the ratios b̂m,n

a but also by the global geometrical distortion of the plasma surface due
to the TMs overlapping. This is a standard method used in the RFX-mod data analysis: the
plasma surface displacement ξa is obtained from the measured radial field at r = a using the
linear ideal-MHD Faraday–Ohm’s law

br(a, θ, φ) = B0(a) · ∇ξa(θ, φ) → ξm,n
a = −irbm,n

r (a)/(mBθ
0 (a) − nε(a)B

φ

0 (a)). (46)

While b̂m,n
a represents the edge radial field normalized to the mode amplitude at the resonant

surface, therefore the eigenfunction shape, the displacement ξa is a sort of normalization of
the edge radial field with the equilibrium field. The plasma surface displacement is divided
into the contributions produced by all the m = 0 and by all the m = 1 modes separately: the
m = 0 modes determine a sausage deformation ξ0(φ) of the plasma surface, while the m = 1
are associated with a helical shift ξ1(φ) with poloidal phase �(φ):

ξa(θ, φ) = ξ0(φ) + ξ1(φ) cos[θ − �(φ)]. (47)
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The quantities ξ0(φ), ξ1(φ), �(φ) can be easily derived from the displacement harmonics
ξ 0,n
a , ξ 1,n

a . We also determine the power Pi,j required by each coil, combining the current and
voltage discrete Fourier harmonics V m,n

c , Im,n
c computed by the model:

Pi,j = Ii,j

Nc
Vi,j ; i = 1, . . . , M; j = 1, . . . , N,

Ii,j =
∑
m,n

Im,n
c ei(mθi−nφj ); Vi,j =

∑
m,n

V m,n
c ei(mθi−nφj ).

(48)

The coils are supposed to be centred at the angles θi = 2π/M × (i − 1), i = 1, . . . , M = 4,
φj = 2π/N × (j − 1), j = 1, . . . , N = 48.

6.2. Simulation examples

Four simulations have been performed keeping the shell at rwi = 0.475 m, as in the single-mode
analysis, the control radius at rf = rwi and varying only the shell time constant: τw = 0.1 s
(s.1), τw = 0.01 s (s.2), τw = 0.003 s (s.3), τw = 0.2 s (s.4). Three extra simulations are
performed with τw = 0.1 s:

(s.5): same gains of (s.1) and rf = rwi, but the shell at rwi = 0.5125 m, corresponding to
the position of the τw = 0.1 s shell in RFX-mod;
(s.6): rwi = 0.475 m without feedback;
(s.7): rwi = 0.475 m and moving the control radius at the plasma edge rf = a.

All the simulations apart from the (s.6), which is performed for 30 ms, are carried out for
100 ms. The derivative gains are fixed by the condition K

m,n
d = τcK

m,n
p for each mode.

The values for the proportional gains are imposed performing a preliminary scan with the
stationary single-mode model: for each mode the largest gain compatible with the condition
|V m,n

c Im,n
c |/Nc < 2500 W at the high–low frequency transition brs = bh–l, just to fix a power

limit, is imposed. They have a decreasing trend with the toroidal mode number n. The
no-feedback simulation (s.6) shows a sudden wall-locking of all TMs. The single-mode bh–l

thresholds are exceeded only by few of them, but, as already pointed out in [10], the non-
linear interaction between the different TMs significantly reduces the effective thresholds.
Figure 16(b) plots the m = 0 plasma surface distortion ξ0(φ) produced by the phase-locking
(45). Note that the structure is stationary due to the wall-locking. In figure 16(a) the m = 1
plasma surface distortion ξ1(φ) is plotted: the m = 1 modes, starting from random phases,
not only wall-lock but also phase-lock together according to ϕ1,n ≈ nφ0 − �1 and produce a
toroidally localized structure close to the angle φ0. This is a well-known phenomenon observed
in the experiment and already explained in [12]. For the m = 1 phase-locking, �1 is a free
parameter [12]. The m = 1 phase-locking relation is satisfied only approximately due to the
irregular time behaviour of the mode amplitudes at the resonant surfaces and the fact that the
m = 1, n = 7 has an amplitude much larger than the other modes. The plots also indicate
that the perturbation penetrates the shell, increasing in time. This effect will be quantified in
figure 23. The final toroidal and poloidal velocity profiles, plotted in figure 17, are compatible,
at least with the order of magnitude and the directions, with the RFX estimates relative to
the intermediate/external region of the plasma, mentioned in section 5.1: we are comparing
our result with the low density region of figure 8 published in [20], which considers the data
in the presence of wall-locked and phase-locked TMs (the negative poloidal direction of that
figure corresponds to our positive direction). As anticipated in section 5.1, this means that the
choice of the unperturbed velocity profiles is sensible, since the final velocity profiles depend
mainly on that choice. As a confirmation of the single-mode analysis, the feedback keeps the
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Figure 16. Plasma surface distortions ξ1(φ) (a) and ξ0(φ) (b) for the case with no-feedback
(s.6). The simulation is carried out for 30 ms. The curves, which represent different times, are
superimposed with an offset.

TMs into rotation in the multi-mode simulations also. This is shown in figure 18, considering
the simulation (s.1). Due to the time-dependent amplitudes at the resonant surfaces and the
non-linear interaction between the different TMs, the uniform rotations seen in the single-
mode analysis are recovered only at irregular intervals. Moreover, the values of the rotation
frequencies can also be different from those obtained in the single-mode analysis, since the
non-linear interaction tends to maintain the TMs phase-locked together. This tendency is
shown in figure 19, considering again the simulation (s.1): the phase-locking for the m = 0 is
imposed, while the phase-locking for the m = 1 is a result of the simulation. The tendencies
to rotate in the presence of feedback and to stay phase-locked together are both realized by the
time derivative of the phase-locking relations for the m = 0 and m = 1 TMs:

dϕ0,n/dt = n dφ0/dt; dϕ1,n/dt ≈ n dφ0/dt − d�1/dt. (49)

According to (49) the m = 1, m = 0 structures rotate close to each other, while the individual
TMs have a differential rotation frequency. For m = 1 modes in particular, if a n̄ such that
n̄dφ0/dt ≈ d�1/dt exists, a change in the rotation direction occurs for n > n̄: this is evident in
the first 40 ms of figure 18. The final velocity profile obtained in the simulation (s.1) at t = 0.1 s
is similar to that shown in figure 17 in the absence of feedback, since all the mode frequencies
are smaller than the unperturbed frequencies at that time. Note, however, that in figure 18 some
modes accelerate close to the high frequency branch values at t ≈ 85–90 ms. Figures 20 and
21 compare the ratios b̂m,n

a , time-averaged in the simulations (s.1)–(s.4), with the predictions of
the stationary single-mode model obtained with gains similar to those of the simulations. Note
a very good agreement between the simulations and the stationary single-mode computation:
this means that, while the non-linear interaction between the different TMs affects their rotation
frequencies, the ratios b̂m,n

a depend mainly on the shell characteristics (assuming that the gains
are in the optimum range). In the multi-mode simulations the fundamental results obtained in
the single-mode analysis are recovered: the feedback prevents the shell penetration and fixes
b̂m,n

a at values close to the ideal shell ones. The performances are better increasing τw, but at
the end a saturation is found since the two cases τw = 0.1 s and τw = 0.2 s are equivalent.
Figure 21 shows a poor efficiency of the feedback in the control of the low n, m = 0 modes:
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Figure 17. Toroidal Vφ(r) = R0�φ and poloidal Vθ (r) = r�θ velocity profiles at the end of the
no-feedback simulation (s.6).

this is simply due to the difficulty in producing these harmonics for such an active coils grid, a
problem encountered in RFX-mod also. As already demonstrated in the single-mode analysis,
for a given shell the ratios b̂m,n

a do not depend on the control radius: this is confirmed in
figure 22 comparing the simulations (s.1) and (s.7), which exhibit the same performances. On
the other hand, the quantities b̂m,n

a depend on the plasma shell distance, as demonstrated in the
same figure by comparing the simulations (s.1) and (s.5). This is an obvious consequence of
the fact that the feedback fixes b̂m,n

a just above the ideal-shell values. Figure 23 demonstrates
the same features of figure 22, by considering the maximum of the plasma surface distortion
due to the m = 1 TMs as a function of time: this quantity is reduced by moving the shell
to the plasma, rather than moving the control radius from rf = rwi to rf = a. The result of
the no-feedback simulation (s.6) and the experimental estimate of RFX-mod (red curve) on
the reference shot are also shown. In the (s.6) case the plasma surface distortion does not
settle to a controlled value, as in the feedback case, but increases in time indicating the shell
penetration. The quite good agreement between the simulation (s.5) and the RFX-mod curve
should indicate that in the case of a multiple shell front end (as that of RFX-mod) it is mainly
the longer time constant shell (the τw = 0.1 s at rwi = 0.5125 m) that determines the feedback
performances. Figure 24 considers the maximum coil power maxi,j [Pi,j ] as a function of
time for all the feedback simulations performed with rwi = 0.475 m. The plotted signals are
smoothed to clarify the comparison between the different simulations. The curves confirm the
single-mode analysis: reducing too much the shell time constant, or moving the control radius
from rf = rwi to rf = a , increases the coil power requested by the feedback; a saturation
with τw occurs, since the two cases τw = 0.1 s and τw = 0.2 s are equivalent. In conclusion,
the TMs non-linear interaction is not seen to change the feedback performance and efficiency
dependence on the shell time constant and on the control radius, which has been obtained in
the single-mode analysis.
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Figure 18. Phase (in radians) evolution of some m = 1 modes for the simulation (s.1): τw = 0.1 s,
rf = rwi = 0.475 m.

7. Concluding remarks

A study of the feedback on the RFP dynamo TMs, in a cylindrical force-free plasma surrounded
by a single resistive shell with active coils placed outside it, has been performed. The adopted
model solves the fluid momentum equation, the shell diffusion equation and the active coil
power supply equation in closed-loop configuration. The CMC scheme [8, 9], in which the
feedback variables are the TMs Fourier harmonics, has been implemented. The unavoidable
delays related to the coils amplifiers, the feedback acquisition and real-time operations have
been included. The coils delay can be compensated by a suitable derivative gain. However,
very small values for these delays have been given in the computations. The feedback is shown
to make the resistive shell behave like an ideal shell virtually for any value of TMs amplitudes

27



Plasma Phys. Control. Fusion 51 (2009) 015006 P Zanca

Figure 19. Plasma surface distortions ξ1(φ) (a) and ξ0(φ) (b) for the feedback case (s.1). The
simulation is carried out for 100 ms. The curves, which represent different times, are superimposed
with an offset.

Figure 20. Time-averaged b̂m,n
a for the various m = 1 TMs, obtained in the simulations (s.1)–(s.4).

The predictions of the stationary single-mode model for gains similar to those of the simulations
are also shown. The solid curve represents the values in the case of an ideal shell in place of a
resistive shell. Note the logarithmic scale in the y-axis.

at the resonant surfaces. The transition from the high frequency rotation branch, related to the
unperturbed fluid motion, to a slower frequency branch is not a problem any more: in fact, due
to the feedback, TMs rotations never stop and the edge amplitudes remain close to the values
they would have with an ideal shell in place of the resistive shell. For constant amplitude at the
resonant surface, the feedback determines an equilibrium condition with uniform TM rotation.
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Figure 21. Time-averaged b̂m,n
a for the various m = 0 TMs, obtained in the same simulations

(s.1)–(s.4) of figure 20. The predictions of the stationary single-mode model for gains similar to
those of the simulations are also shown. The solid curve represents the values in the case of an
ideal shell in place of the resistive shell. Note the logarithmic scale in the y-axis.

Figure 22. Time-averaged b̂m,n
a for the various m = 1 TMs, obtained in the simulations (s.1), (s.5),

(s.7). In this case we keep fixed the shell time constant at τw = 0.1 s. With respect to (s.1), in (s.5)
the shell radius is moved farther from the plasma, and in (s.7) the control radius is moved at the
plasma edge. The solid curves represent the values in the case of an ideal shell in the place of the
resistive shell.
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Figure 23. Maximum of the m = 1 plasma surface distortion as a function of time for the same
simulations (s.1), (s.5), (s.7) of figure 22, and for the no-feedback simulation (s.6). The red curve
is the value estimated in RFX-mod on the reference shot 23810: only the times greater than 30 ms,
when the experimental equilibrium settles to the stationary value used in the simulations, are shown.

According to our model, feedback induced instabilities can occur only for gains too large and
do not prevent the existence of a wide region of gain values in which the feedback performances
are good. We have shown that good feedback performance and efficiency are obtained if τw

is not too small. Moreover a saturation is seen with a copper shell for τw > 0.1 s. A similar
saturation is seen in the wall-locking threshold for the pure passive shell stabilization, as shown
in figure 4. The explored τw range is limited by the condition δw � rwi where equation (24)
is valid. Nevertheless, this analysis indicates that a thick shell with a very large τw is not
necessary and that the RFP can work with a relatively thin shell (τw ∼ 100 ms) aided by the
feedback coils. The feedback beneficial effects on the dynamo TMs are currently observed
in RFX-mod, where the highest plasma current ever reached in an RFP, 1.6 MA in the latest
experimental campaign (shot 24533), has been obtained. The basic aspect of the CMC scheme,
namely, the fact that the feedback variables are not the raw measurements, which unavoidably
present the content of sideband harmonics produced by the coils grid, but the Fourier harmonic
of the TMs, has been proven decisive to obtain the rotation stop avoidance in the experiment.
With a P.D. controller, the feedback cannot reduce the ratios b̂m,n

a , between the amplitudes at
the plasma edge r = a and at the resonant surface, below the values obtained with an ideal
shell in the place of the resistive shell, even with the control radius at rf = a. We believe
that this is related to the non-linear character of the model describing the TMs dynamic in the
presence of feedback. If a more sophisticated controller were not feasible, we were obliged
to rely on the standard P.D., the conclusion would be that the shell should be placed as close
as possible to the plasma, in order to minimize b̂m,n

a . At present, the main limitation of the
RFX-mod feedback is the quite large plasma–shell distance (5.35 cm): our analysis indicates
that reducing it would be beneficial for the edge radial field control.
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Figure 24. Maximum of the coil power as a function of time for the simulations with rwi = 0.475 m.
The signals are smoothed for clarity reason. Note the logarithmic scale in the y-axis.
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Appendix A. Newcomb’s equation and electromagnetic torque

In this section we present the formulae for the electromagnetic torque produced by the non-
linear interaction between TMs, which have been obtained in [14]. Here the expressions are
slightly generalized in order to take into account the non-ideal boundary conditions. The
starting point is Newcomb’s equation, which describes the TMs radial profiles inside the
plasma.

Appendix A.1. Newcomb’s equation

Within the cylindrical force-free approximation, the RFP equilibrium is given by

∇ × B0 = µ0 J0 = σ(r)B0; B0(r) = (0, B0θ (r), B0φ(r)). (A.1)

For the numerical computations the standard representation σ(r) = (2θ0/a)(1 − (r/a)α) is
adopted [24].

The TMs radial profiles are obtained from the ideal-MHD force balance equation:

∇ × ( J × B) = 0 ⇒ (B · ∇) J − ( J · ∇)B = 0. (A.2)
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Separating the linear from the non-linear terms in the perturbations as done in [14], we get

( j · ∇)B0 + ( J0 · ∇)b − (b · ∇) J0 − (B0 · ∇) j = A
µ0

, (A.3)

A
µ0

= (b · ∇) j − ( j · ∇)b. (A.4)

These equations must be coupled with

∇ · b = 0, (A.5)

∇ × b = µ0 j. (A.6)

From (A.1), (A.3)–(A.6) and definition (1) we get

b
m,n
θ = − m

Hm,n

∂ψm,n

∂r
+

nεσ

Hm,n
ψm,n +

nεr2

Hm,nFm,n
Am,n

r , (A.7)

b
m,n
φ = nε

Hm,n

∂ψm,n

∂r
+

mσ

Hm,n
ψm,n +

mr2

Hm,nFm,n
Am,n

r , (A.8)

µ0j
m,n
r = σbm,n

r + i
r

Fm,n
Am,n

r , (A.9)

µ0j
m,n
θ = σb

m,n
θ + i

rBθ0

Fm,n

dσ

dr
bm,n

r + i
r

Fm,n
A

m,n
θ +

r2(σBφ0 − 2Bθ0/r)

(Fm,n)2
Am,n

r , (A.10)

µ0j
m,n
φ = σb

m,n
φ + i

rBφ0

Fm,n

dσ

dr
bm,n

r + i
r

Fm,n
A

m,n
φ − r2σBθ0

(Fm,n)2
Am,n

r (A.11)

and a second-order ordinary differential equation for the function ψ :

∂

∂r

[
f m,n ∂

∂r
ψm,n

]
− gm,nψm,n = V m,n

nε
. (A.12)

Here we have defined

ε(r) = r/R0; Hm,n(r) = m2 + n2ε2; f m,n(r) = r/Hm,n, (A.13)

Fm,n(r) = mBθ0 − nεBφ0; Gm,n(r) = mBφ0 + nεBθ0, (A.14)

gm,n(r) = 1

r
+

r Gm,n

Hm,nFm,n

dσ

dr
+

2mnεσ

(Hm,n)2
− rσ 2

Hm,n
, (A.15)

V m,n(r) = −i
r2

Fm,n
A

m,n
θ +

2r2Bθ0

(Fm,n)2
Am,n

r − mr3σGm,n

Hm,n(Fm,n)2
Am,n

r − r
∂

∂r

[
mr2Am,n

r

Hm,nFm,n

]
.

(A.16)

A perturbative approach is adopted: in equations (A.7)–(A.12) and (A.16) the non-linear terms
A act as source terms, since they are intended to be evaluated using the solutions of equation
(A.12) in the linear approximation. This is the so-called Newcomb’s equation:

∂

∂r

[
f m,n ∂

∂r
ψm,n

]
− gm,nψm,n = 0. (A.17)

For the linear solutions, expressions (A.7)–(A.11) hold letting A = 0. Note that all these
expressions are derived in the framework of ideal-MHD, and they are not valid in the proximity
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of the mode resonant surfaces rm,n, where Fm,n(rm,n) = 0. In the proximity of the mode
resonant surface the linear solution (A.17) behaves like

ψm,n(x) = �m,n
s + λm,nx(ln |x| − 1) + pm,nx + · · · , x = r − rm,n

rm,n

. (A.18)

The coefficient pm,n can be discontinuous across the resonant surface. This is related to the
derivative discontinuity introduced in formula (3). Definition (A.4), and relations (A.7)–(A.11)
in the linear approximation, brings to the following expressions for A in terms of the linear
solutions:

Am,n =
∑

m1, n1, m2, n2 ∈ Z
(m1, n1) + (m2, n2) = (m, n)

Am,n
m1,n1,m2,n2

, (A.19)

where for a triplet of modes such that (m1, n1) + (m2, n2) = (m, n) we have

(Am,n
m1,n1,m2,n2

)r = −dσ

dr

ψm1,n1ψm2,n2

r2

(Fm,n)2

Fm1,n1Fm2,n2
; (A.20)

(Am,n
m1,n1,m2,n2

)φ = i

r

dσ

dr

{
mσψm1,n1ψm2,n2

[
Fm2,n2

Fm1,n1Hm2,n2
+

Fm1,n1

Fm2,n2Hm1,n1

]

+ mψm2,n2
∂ψm1,n1

∂r

Gm1,n1

Fm2,n2Hm1,n1
+ mψm1,n1

∂ψm2,n2

∂r

Gm2,n2

Fm1,n1Hm2,n2

}

− i

r

∂

∂r

[
dσ

dr
ψm1,n1ψm2,n2

B0φ Fm,n

Fm1,n1Fm2,n2

]
; (A.21)

(Am,n
m1,n1,m2,n2

)θ = i

r

dσ

dr

{
nεσψm1,n1ψm2,n2

[
Fm2,n2

Fm1,n1Hm2,n2
+

Fm1,n1

Fm2,n2Hm1,n1

]

+ nεψm2,n2
∂ψm1,n1

∂r

Gm1,n1

Fm2,n2Hm1,n1
+ nεψm1,n1

∂ψm2,n2

∂r

Gm2,n2

Fm1,n1Hm2,n2

}

− i
∂

∂r

[
1

r

dσ

dr
ψm1,n1ψm2,n2

B0θF
m,n

Fm1,n1Fm2,n2

]
. (A.22)

Appendix A.2. Electromagnetic torque

The electromagnetic torque along the toroidal direction, integrated on the angular co-ordinates
at the generic radius r , is

TEM,φ(r) =
�

dθ dφrR2
0( j × b)φ =

�
dθ dφrR2

0(jrbθ − jθbr). (A.23)

Due to the angular integrations only the product of the perturbations gives a contribution in
(A.23). Using Ampere’s law (A.6), the torque is expressed by a sum over all the perturbations
m, n:

TEM,φ(r) = 4π2R2
0

µ0

∑
m,n∈Z

Re

{
∂

∂r
[rbm,n

r (b
m,n
φ )∗]

}
= −4π2R2

0

µ0

∑
m,n∈Z

Im

{
∂

∂r
[ψm,n(b

m,n
φ )∗]

}
.

(A.24)

This formula is valid everywhere in the plasma, since it derives by Ampere’s law only. Away
from the mode resonant surfaces, we can also express the r.h.s. of (A.24) using the ideal-MHD
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formulae derived in the previous section. Making use of (A.8) and (A.12) we get for the m, n

contribution:

Im

{
∂

∂r
[ψm,n(b

m,n
φ )∗]

}
= Im

{
1

r
ψm,n(V m,n)∗ +

∂

∂r

[
mr2ψm,n(Am,n

r )∗

Hm,nFm,n

]}
. (A.25)

The r.h.s of (A.25), which contains triple product of perturbations, is evaluated using the linear
Newcomb’s solutions, making use of (A.16), (A.19)–(A.22). We get

Im

{
∂

∂r
[ψm,n(b

m,n
φ )∗]

}
=

∑
m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)


m,n
m1,n1,m2,n2

. (A.26)

For a triplet of modes such that (m1, n1) + (m2, n2) = (m, n), we have defined


m,n
m1,n1,m2,n2

(r) = Im

{
n

R0
tm,n
m1,n1,m2,n2

(r) − ∂

∂r

[
dσ

dr

B0θ (ψ
m1,n1)∗(ψm2,n2)∗ψm,n

Fm1,n1Fm2,n2

]}
, (A.27)

tm,n
m1,n1,m2,n2

(r) = dσ

dr

{
rψm,n(ψm1,n1)∗

(
∂ψm2,n2

∂r

)∗
Gm2,n2

Fm,nFm1,n1Hm2,n2

+ rψm,n(ψm2,n2)∗
(

∂ψm1,n1

∂r

)∗
Gm1,n1

Fm,nFm2,n2Hm1,n1

+ r
∂ψm,n

∂r
(ψm1,n1)∗(ψm2,n2)∗

Gm,n

Fm2,n2Fm1,n1Hm,n

+ ψm,n(ψm1,n1)∗(ψm2,n2)∗
[
rσ

(
Fm1,n1

Fm,nFm2,n2Hm1,n1
+

Fm2,n2

Fm,nFm1,n1Hm2,n2

+
Fm,n

Fm2,n2Fm1,n1Hm,n

)
+

2B0θB0φ − rσ (B2
0θ + B2

0φ)

Fm2,n2Fm1,n1Fm,n

] }
. (A.28)

The torque at a given radius r is therefore given by a summation over all the triplets of interacting
perturbations expressed in terms of the linear Newcomb’s solutions:

TEM,φ(r) = −4π2R2
0

µ0

∑
m, n, m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)


m,n
m1,n1,m2,n2

. (A.29)

It is easy to show that for such a triplet


m,n
m1,n1,m2,n2

+ 
m1,n1
m,n,−m2,−n2

+ 
m2,n2−m1,−n1,m,n = 0. (A.30)

Therefore, away from the mode resonant surfaces where ideal-MHD formulae (A.25)–(A.30)
are valid, the torque (A.29) is zero: TEM,φ(r) = 0. It is possible to show that the same results
hold for the angular integrated poloidal electromagnetic torque [14]. This result is consistent
with the fact that the ideal force balance relation (A.2), the starting point of this derivation,
gives by definition a zero angular integrated torque. A non-zero angular integrated torque
can instead develop in the vicinity of the mode resonant surfaces where ideal MHD breaks
down and expression (A.29) becomes singular. In fact, according to the behaviour of the
linear Newcomb’s equation solution, both the derivative of ψm,n and the toroidal field b

m,n
φ ,

related by formula (A.8), can have a jump across the resonant surface rm,n. Looking at formula
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(A.24), the jumps in correspondence to the various resonant surfaces rm,n give rise to dirac-like
localized torques,

TEM,φ(r) =
∑
m ∈ Z
n > 0

δT
m,n

EM,φδ(r − rm,n); TEM,θ (r) =
∑
m ∈ Z
n > 0

δT
m,n

EM,θ δ(r − rm,n), (A.31)

where

δT
m,n

EM,φ =
∫ rm,n+

rm,n−
TEM,φ(r) dr = −8π2R2

0

µ0
Im[ψm,n(b

m,n
φ )∗]rm,n+

rm,n− m ∈ Z, n > 0. (A.32)

Moreover, as shown in [1], between the poloidal and toroidal components of the torque a
simple proportional relation holds:

δT
m,n

EM,θ = −m

n
δT

m,n
EM,φ. (A.33)

The summation in (A.31) runs over the resonant surfaces, so only the positive n are considered;
the contributions of both the complex conjugate harmonics (m, n), (−m, −n) for a given
resonant surface are included in the factor 8 in front of the r.h.s of (A.32). The important point
is that the discontinuities associated with the localized torques in (A.32) can be obtained from
the ideal-MHD expressions (A.26)–(A.28). We start observing that, despite the presence of
singularities at the mode resonant surfaces, expression (A.28) is integrable taking the Cauchy
principal value: in fact, assuming that the three modes involved have different resonant surfaces,
according to expansion (A.18) these singularities are of the types 1/x and ln |x|. Therefore,
we can perform a symbolic integration of (A.26): we have to separate the region 0 < r < rm,n,
where the expression consistent with the condition ψm,n(0) = 0 holds:

Im[ψm,n(b
m,n
φ )∗] =

∑
m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)

Im

{
n

R0
P

∫ r

0
tm,n
m1,n1,m2,n2

(ξ) dξ

−
[

dσ

dr

B0θ (ψ
m1,n1)∗(ψm2,n2)∗ψm,n

Fm1,n1Fm2,n2

]}
, (A.34)

from the region rm,n < r where another expression consistent with the edge value at a given
radius a � r̄ � rwi in the vacuum region (σ = 0) between the plasma and the shell holds:

Im[ψm,n(b
m,n
φ )∗] =

∑
m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)

Im

{
n

R0
P

∫ r

r̄

tm,n
m1,n1,m2,n2

(ξ) dξ

−
[

dσ

dr

B0θ (ψ
m1,n1)∗(ψm2,n2)∗ψm,n

Fm1,n1Fm2,n2

]}
+ Im[ψm,n(b

m,n
φ )∗]r̄ . (A.35)

These two regions are separated by the resonant surface r = rm,n, since at that point the
quantity Im[ψm,n(b

m,n
φ )∗] can have a jump. This jump, and therefore the localized torque, is

given by the difference in (A.34) and (A.35) evaluated at r = rm,n:

δT
m,n

EM,φ = 8π2R0n

µ0

{ ∑
m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)

Im

[
P

∫ a

0
tm,n
m1,n1,m2,n2

(r) dr

]

+ Im

[
f m,n ∂ψm,n

∂r
(ψm,n)∗

]
r̄

}
. (A.36)

In this expression the first term represents the electromagnetic torque developed by the non-
linear interaction between the modes expressed in terms of the linear Newcomb’s solutions;

35



Plasma Phys. Control. Fusion 51 (2009) 015006 P Zanca

here the integral can be limited between [0, a], since the integrand is zero in vacuum. The
second term is the edge contribution present in (A.35), expressed using (A.8) taking into
account that A = 0 in vacuum: it represents the electromagnetic torque produced by the
interaction between the m, n radial field and the m, n eddy currents into the shell. This
term was not present in the analogous formulae of [14], since it was supposed that an ideal
shell surrounded the plasma, in which case ψm,n(r̄ = rwi) = 0. We also express this
contribution using the linear Newcomb’s solutions. For both terms of (A.36) it is convenient
to introduce the solution basis functions defined with formula (2), taking into account that
ψm,n(r, t) = �m,n

s (t)ψ̂m,n
s (r) + �

m,n
wi (t)ψ̂

m,n
wi (r) in the region 0 < r � rwi considered here.

Concerning the edge contribution, since for the linear solutions equation (A.17) implies that

Im

{
∂

∂r

[
f m,n ∂ψm,n

∂r
(ψm,n)∗

]}
= 0,

taking into account the vanishing conditions for ψm,n in the origin and definition (3), we have

Im

[
f m,n ∂ψm,n

∂r
(ψm,n)∗

]
r̄

= Im

[
f m,n ∂ψm,n

∂r
(ψm,n)∗

]rm,n+

rm,n−
= Em,n

ws

Hm,n(rm,n)
Im[�m,n

wi (�m,n
s )∗].

(A.37)

We finally get

δT
m,n

EM,φ = 8π2R0n

µ0

∑
m1, n1, m2, n2 ∈ Z

(m1, n1) + (m2, n2) = (m, n)

∑
i,j,k∈{s,wi}

Im[�m,n
i (�

m1,n1
j )∗(�m2,n2

k )∗]

· 
m,n
m1,n1,m2,n2

(i, j, k) +
8π2R0n

µ0

Em,n
ws

Hm,n(rm,n)
Im[�m,n

wi (�m,n
s )∗], (A.38)

where we have defined the real quantities


m,n
m1,n1,m2,n2

(i, j, k) = P

∫ a

0
t̂m,n
m1,n1,m2,n2

(i, j, k, r) dr i, j, k ∈ {s, wi} (A.39)

being

t̂m,n
m1,n1,m2,n2

(i, j, k, r) = dσ

dr

{
rψ̂

m,n
i ψ̂

m1,n1
j

dψ̂
m2,n2
k

dr

Gm2,n2

Fm,nFm1,n1Hm2,n2

+ rψ̂
m,n
i

dψ̂
m1,n1
j

dr
ψ̂

m2,n2
k

Gm1,n1

Fm,nFm2,n2Hm1,n1

+ r
dψ̂

m,n
i

dr
ψ̂

m1,n1
j ψ̂

m2,n2
k

Gm,n

Fm2,n2Fm1,n1Hm,n

+ ψ̂
m,n
i ψ̂

m1,n1
j ψ̂

m2,n2
k

[
rσ

(
Fm1,n1

Fm,nFm2,n2Hm1,n1
+

Fm2,n2

Fm,nFm1,n1Hm2,n2

+
Fm,n

Fm2,n2Fm1,n1Hm,n

)
+

2B0θB0φ − rσ (B2
0θ + B2

0φ)

Fm2,n2Fm1,n1Fm,n

] }
;

i, j, k ∈ {s, wi}. (A.40)

Formulae (A.33) and (A.38) express the electromagnetic torque which develops at the resonant
surface m, n in terms of the amplitudes and phases at the resonant surfaces and at the inner shell
radius of the m, n mode and of all the modes involved in the non-linear interaction with the m, n
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mode. All the real coefficients present in (A.38) are obtained from the solutions ψ̂s(r), ψ̂wi(r)

of the linear Newcomb’s equation for all the modes involved. Formulae (A.33)and (A.38)
generalize to the resistive shell boundary condition the result of [14]. This condition, besides
the edge contribution, introduces eight coefficients (A.39) for a given triplet of modes, while
in the ideal shell case (�wi = 0) we would have just the single coefficient 
m,n

m1,n1,m2,n2
(s, s, s).

Appendix B. Coils voltages

The relationship between the coils currents and voltages is

Vi,j = Rc

Nc
Ii,j + cR0�θ�φNc

d

dt
br

i,j (c), (B.1)

where br
i,j (c) is the average radial field enclosed by the i, j coil. Taking the m, n discrete

Fourier harmonic of (B.1) we have

V m,n
c = Rc

Nc
Im,n

c + cR0�θ�φNc
d

dt

∑
l, k ∈ Z

p = m + lM
q = n + kN

bp,q
r (c)f (p, q) (B.2)

being

f (p, q) =
sin

(
q

�φ

2

)

q
�φ

2

sin

(
p

�θ

2

)

p
�θ

2

.

The second term of (B.2) is the time variation of the radial flux enclosed by the coils determined
by them, nmode and by the sidebands (l �= 0 or k �= 0)produced by the coils. By combining (4)
and (27), for the m, n mode we have bm,n

r (c) = i�m,n
c /c = i(Lm,nIm,n

c − �m,n
we Em,n

wc )/(cEm,n
c ).

As shown in [8], the sidebands can be safely computed from the coils current using the vacuum
approximation. Here we adopt the further simplification of neglecting the shell contribution
(justified by the fact that we are considering the sideband at r = c), in which case there is a
simple proportional relation between the p, q sideband and the current discrete harmonic Im,n

c :

bp,q
r (c) = −µ0K

′
p

( |q|c
R0

)
I ′

p

( |q|c
R0

)
q2c

R2
0

f (p, q)Im,n
c . (B.3)

Therefore we arrive at the final expression:

V m,n
c = Rc

Nc
Im,n

c + lm,n d

dt
Im,n

c − 4R0Nc

mn
sin

(
n
�φ

2

)
sin

(
m

�θ

2

)
iEm,n

wc

E
m,n
c

d

dt
�m,n

we , (B.4)

lm,n = −µ0Nc�θ�φ




c2

R0

∑
(l, k) ∈ Z2 − (0, 0)

p = m + lM
q = n + kN

K ′
p

( |q|c
R0

)
I ′

p

( |q|c
R0

)
q2f (p, q)2

+ Hm,n(c)
R0

E
m,n
c

f (m, n)2


 . (B.5)
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