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Abstract
Recently the author used an information theoretical formulation of non-
equilibrium statistical mechanics (MaxEnt) to derive the fluctuation theorem
(FT) concerning the probability of second law violating phase-space paths.
A less rigorous argument leading to the variational principle of maximum
entropy production (MEP) was also given. Here a more rigorous and general
mathematical derivation of MEP from MaxEnt is presented, and the relationship
between MEP and the FT is thereby clarified. Specifically, it is shown that the
FT allows a general orthogonality property of maximum information entropy
to be extended to entropy production itself, from which MEP then follows. The
new derivation highlights MEP and the FT as generic properties of MaxEnt
probability distributions involving anti-symmetric constraints, independently
of any physical interpretation. Physically, MEP applies to the entropy
production of those macroscopic fluxes that are free to vary under the imposed
constraints, and corresponds to selection of the most probable macroscopic
flux configuration. In special cases MaxEnt also leads to various upper bound
transport principles. The relationship between MaxEnt and previous theories
of irreversible processes due to Onsager, Prigogine and Ziegler is also clarified
in the light of these results.

PACS numbers: 05.70.Ln, 65.40.Gr, 89.70.+c

The constrained maximization of Shannon information entropy (MaxEnt) is an algorithm
for constructing probability distributions from partial information, which resides naturally
within the framework of Bayesian probability theory [1]. It is a statistical inference tool of
considerable generality. In particular, Jaynes [2] has proposed MaxEnt as a universal method
for constructing the microscopic probability distributions of equilibrium and non-equilibrium
statistical mechanics. Recently the author applied MaxEnt to the information entropy of
microscopic phase-space paths, and derived three generic non-equilibrium properties from the
resulting MaxEnt path distribution: the fluctuation theorem (FT), maximum entropy production
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(MEP) and self-organized criticality for slowly flux-driven systems [3]. In this letter we present
a more rigorous and general mathematical derivation of MEP from MaxEnt which clarifies
the relationship between MEP and the FT. This new derivation of MEP also sheds light on the
relationship between MaxEnt and previous theories of irreversible processes due to Onsager
[4], Prigogine [5] and Ziegler [6].

Let us begin by recalling some general mathematical properties of MaxEnt distributions
which hold irrespective of any physical assumptions [1]. The purpose here is to show that
MEP and the FT are generic properties of a certain class of MaxEnt distributions. The physical
interpretation of MaxEnt and MEP will be addressed subsequently. We consider a situation
with n potential outcomes and m < n constraints in the form of known values Fk of certain
functions fk (1 � k � m). We wish to assign Bayesian probabilities pi (1 � i � n) so as to
quantify our partial information about the outcomes. In the MaxEnt approach we choose the
distribution pi that maximizes the Shannon information entropy

H = −
n∑

i=1

pi log pi (1)

subject to the constraints

〈fk〉 ≡
n∑

i=1

pifk(i) = Fk, 1 � k � m (2)

n∑
i=1

pi = 1. (3)

This procedure gives the least-biased probability distribution consistent with the available
information (i.e. the m constraints, the n outcomes and the mn values fk(i)) because, by
construction, pi contains this information alone. Equation (2) does not mean that the constraints
Fk must take the form of sample averages (although this case is not excluded); Fk can be any
data whatsoever, including single measurements. Equation (2) simply means that pi must agree
with the available data in the sense that Fk is recoverable from pi as the expectation value 〈fk〉,
the rationale being that 〈fk〉 is the estimator of fk with minimum expected square error [7].
Implicit here is the Bayesian interpretation of pi as a measure of our state of knowledge about
the real world rather than an inherent property of the real world (a sampling frequency) [1].

By introducing the vector of Lagrange multipliers (λ1, . . . , λm) ≡ λ and defining the
partition function

Z(λ) ≡
n∑

i=1

exp

{
m∑

k=1

λkfk(i)

}
(4)

the MaxEnt distribution is obtained as

pi = 1

Z(λ)
exp

{
m∑

k=1

λkfk(i)

}
≡ p(i | FC) (5)

where the notation p(i | FC) (the probability of i given F and C) reminds us that pi is
conditional on the available information consisting of the constraint vector F ≡ (F1, . . . , Fm)

together with the prior information C (e.g. microscopic physics in the case of statistical
mechanics [8]) that determines the set of allowed outcomes and corresponding function values
fk(i). The Lagrange multipliers λ may be expressed in terms of the constraints F by solving
the relations

Fk = 〈fk〉 = ∂ log Z(λ)

∂λk

, 1 � k � m, (6)
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leading directly to the reciprocity relations and fluctuation formulae

Bjk ≡ ∂Fk

∂λj

= ∂Fj

∂λk

= ∂2 log Z(λ)

∂λj∂λk

= 〈fjfk〉 − 〈fj 〉〈fk〉, 1 � j, k � m. (7)

The maximum value of the information entropy is

Hmax = log Z(λ) −
m∑

k=1

λkFk. (8)

The solution of equation (6) for λ, when substituted into equation (8), gives Hmax as a function
of the constraint vector F alone, a function which will be denoted by S(F ). In order to keep
the notation simple in the following analysis, we temporarily suppress the dependence of S
on the prior information C, although it will be introduced later when required (equation (23)).
Equation (8) describes a Legendre transformation between S(F ) and log Z(λ). By considering
small changes in the constraints F , it is straightforward to show that

∂S(F )

∂Fk

= −λk, 1 � k � m. (9)

Equation (9) is a general orthogonality property of MaxEnt distributions. It states that the
vector of Lagrange multipliers λ is everywhere locally normal to the contours of S in F-space
(and points in the direction of decreasing S). Thus λ specifies not only the MaxEnt distribution
corresponding to a given constraint vector F , but also how S will vary under small changes
in the constraints in the neighbourhood of F . Further differentiation of equation (9) gives the
reciprocity relations in terms of S as

Ajk ≡ ∂λk

∂Fj

= ∂λj

∂Fk

= − ∂2S(F )

∂Fj∂Fk

, 1 � j, k � m. (10)

A and B are symmetric, positive definite matrices. Furthermore A (the entropy curvature
matrix) is the inverse of B (the covariance matrix), provided we are dealing with linearly
independent constraints (i.e. ∂Fj/∂Fk = δjk).

Next we consider those situations in which the potential outcomes can be grouped in pairs
(i+, i–) with respect to which each function fk is anti-symmetric,

fk(i−) = − fk(i+), 1 � k � m. (11)

Then the MaxEnt distribution satisfies the generic ‘fluctuation theorem’ (FT)

pi+

pi−
= exp

{
2

m∑
k=1

λkfk(i+)

}
. (12)

A variety of relationships of this general form have been derived for stationary and non-
stationary physical systems, in terms of the ratio of probabilities of pairs of microscopic
phase-space trajectories related by path reversal [9]. It was recognized in [10] that a common
explanation for these relationships lies in the hypothesis that the trajectories have a Gibbs-
type probability distribution. MaxEnt provides the natural formalism in which Gibbs-type
distributions emerge, whether or not they refer to physical systems. Thus the FT is not
confined to physical systems alone but arises in a (potentially large) class of statistical inference
problems involving constraint functions which are anti-symmetric (sensu equation (11)).

The generic FT (equation (12)) has important implications for the functional form of the
relationship between λ and F . This may be seen explicitly by expressing the FT in terms of
p(f ), the p.d.f. of f ≡ (f1, . . . , fm),

p(f)

p(−f)
= exp

(
2

m∑
k=1

λkfk

)
(13)
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and invoking the quadratic (steepest descent) approximation to p(f ) around f = F ,

p(f) ∝ exp


−1

2

m∑
j,k=1

(fj − Fj )Ajk(fk − Fk)


 . (14)

It is easily verified that equations (13) and (14) are satisfied simultaneously for all f if and
only if

λk =
m∑

j=1

Ajk(F )Fj (15)

which, by inversion, implies

Fk =
m∑

j=1

Bjk(λ)λj . (16)

Here we emphasize that, in general, the ‘constitutive relations’ between λ and F described by
equations (15) and (16) are nonlinear due to the dependences, respectively, of A on F and B
on λ.

These consequences of the FT may be re-expressed as gradient properties of the
‘dissipation function’ (so-called for reasons that will become apparent in equation (27)),
defined by

d ≡ 2
m∑

k=1

λkfk. (17)

Substitution of Ajk = ∂λj/∂Fk into equation (15) leads straightforwardly to an orthogonality
condition in F-space satisfied by the mean dissipation D ≡ 〈d〉,

∂D(F )

∂Fk

= 4λk, 1 � k � m. (18)

Thus the FT extends the orthogonality property of S (equation (9)) to the mean dissipation
function: the vector of Lagrange multipliers λ indicates the direction in F-space of steepest
descent on the S-surface and of steepest ascent on the mean dissipation surface D(F ). In other
words, the D-surface is essentially an inverted copy of the S-surface. Similarly, from Bjk =
∂Fj/∂λk and equation (16), we obtain the dual orthogonality condition in λ-space:

∂D(λ)

∂λk

= 4Fk, 1 � k � m. (19)

The constraint vector F indicates the direction in λ-space of steepest ascent on the dissipation
surface D(λ). Equations (15) and (16) also yield the relations

D = 2
m∑

j,k=1

Ajk(F )FjFk = 2
m∑

j,k=1

Bjk(λ)λjλk = 1

2
�2 (20)

where �2 ≡ 〈d2〉 − D2 is the variance of d. As implied by the arguments of A and B, in general
D is not a quadratic function of F or λ.

As we now show, the orthogonality conditions (equations (18) and (19)) derived from
the FT imply that D adopts its maximum value allowed under the imposed constraints.
Let us consider equation (19) first. A given set of constraints defines a fixed vector F
which, to be specific, we denote by F ∗. The MaxEnt value of the Lagrange multiplier
vector, λ∗, corresponding to the prescribed F ∗ must then satisfy the orthogonality condition
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∂D(λ)/∂λk|λ=λ∗ = 4F ∗
k . This coincides with the value of λ that maximizes D(λ) subject to

the constraint

D(λ) = 2
m∑

k=1

λkF
∗
k (21)

as may be verified by forming the Lagrangian function

�(λ) ≡ D(λ) + γ

{
D(λ) − 2

m∑
k=1

λkF
∗
k

}
(22)

in which γ is a Lagrange multiplier; setting ∂�(λ)/∂λk|λ=λ∗ = 0 reproduces the required
orthogonality condition for γ = −2. That this solution is a maximum follows from
∂2�/∂λj∂λk = (1+γ )∂2D/∂λj∂λk = −4Bjk and the positive definiteness of B. Geometrically,
the equation 2

∑m
k=1 λkF

∗
k = c defines a plane π (c) in λ-space whose normal lies in the

direction of the prescribed F ∗, while the equation D(λ) = c defines a contour of the mean
dissipation function in λ-space. Equation (21) then implies that the values of c allowed by
the constraints F ∗ are those for which the plane π (c) intersects the contour D(λ) = c. From
among these allowed values of c the orthogonality condition selects the value c∗ for which
π (c∗) intersects the contour D(λ) = c∗ tangentially, at a single point λ∗ corresponding to the
maximum allowed value of c.

In contrast to this result, we note that D(λ) has a minimum at λ∗ with respect to variations
in λ which are restricted to the plane π (c∗), as may be verified by forming the Lagrangian
function

�(λ) ≡ D(λ) + γ

{
2

m∑
k=1

λkF
∗
k − c∗

}
;

setting ∂�(λ)/∂λk|λ=λ∗ = 0 gives the orthogonality condition at λ∗ for γ = −2, and
∂2�/∂λj∂λk = ∂2D/∂λj∂λk = 4Bjk implies that this stationary point is a minimum. Anticipating
the physical interpretation of D as entropy production (see equation (28)), Prigogine’s principle
of minimum entropy production [5] may be seen as a special case of this latter type of
constrained variation in which one or more components of F ∗ is zero (say, F ∗

k = 0 for
1 � k � s < m). Then within the plane π (c∗) the complementary components of λ (i.e.
λk for s < k � m) are fixed, and D(λ) has a minimum with respect to variation in the free
components of λ (i.e. λk for 1 � k � s). This last statement is in fact somewhat more general
than Prigogine’s result, because it does not require the usual near-equilibrium assumption of
linear constitutive relations.

In the MaxEnt distribution, the information concerning the constraints F is encoded in the
vector of Lagrange multipliers λ via equation (6). It is then a matter of convenience whether
we choose F or λ to describe the imposed constraints. By an argument identical to that leading
to maximum dissipation in λ-space, the orthogonality condition in F-space (equation (18)) is
equivalent to maximizing D(F ) subject to the constraint D(F ) = 2

∑m
k=1 λ∗

kFk in which λ∗

is prescribed, the solution being a maximum on account of the positive definiteness of A.
We now consider the less restrictive problem in which the prior information C represents all

of the available information, and Fk (1 � k � m) represent free (linearly independent) variables
to be determined from C. Here C includes not only the prior information (e.g. microscopic
physics) determining the set of allowed outcomes 1 � i � n, but also the conditions of the
problem (e.g. steady-state conditions, critical thresholds) determining the set of variables Fk

(1 � k � m) that are linearly independent and their domain of allowed values in F-space.
We wish to estimate the Fk from knowledge of C alone. A fundamental property of any
such estimate, F C , is its redundancy in the sense that knowing both F C and C cannot alter
our uncertainty about the outcomes based on knowledge of C alone. We may express this
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mathematically through the redundancy condition

S(F CC) = S(C) (23)

where S(F CC) and S(C) are the MaxEnt information entropies of the conditional probabilities
p(i | F CC) and p(i | C) respectively. The distribution p(i | F CC) is given by equation (5) with
F = F C , and we now indicate explicitly the dependence of the corresponding information
entropy, S(F CC), on the prior information C. As before, we consider the case where the
functions fk are anti-symmetric over the outcomes (sensu equation (11)). In that case a
dissipation function D(F ) can be defined, as before, through p(i | FC). Suppose now that
D(F ) has an upper bound Dmax(C) within the domain of F-space compatible with C. It may
be shown from the orthogonality property of D(F ) established above that the only estimate
F C satisfying both the redundancy condition (equation (23)) and the upper bound constraint
on D(F ) is that for which D(F ) attains its upper bound value Dmax(C) (see the appendix).
Physically, this result corresponds to MEP (see below). Furthermore, in the special case where
C admits only one independent variable F (i.e. m = 1) and where F itself has an upper bound
Fmax(C), it may be shown similarly (see the appendix) that the only consistent estimate of
F from C is Fmax(C). This latter result corresponds to various maximum flux principles in
physics (see below). Other than the existence of the upper bounds Dmax(C) and Fmax(C), these
results are independent of the specific nature of the constraint C. The property of maximum
dissipation (and maximum flux) is generic to MaxEnt estimates of anti-symmetric functions.

So far we have deliberately avoided any physical interpretation in the derivation of the
above results, in order to expose them as generic properties of MaxEnt which apply to a
certain class of problems involving statistical inference from partial information. We now ask:
if MaxEnt is fundamentally an algorithm of Bayesian statistical inference, why should we
expect it to work as a description of nature? The answer is that, in its application to statistical
mechanics, MaxEnt predicts that behaviour which is selected reproducibly by nature under
the imposed constraints [2, 3]. The latter consist of the applied experimental conditions
(constraints F or, equivalently, λ) together with the known or hypothesized microscopic
physics defining the allowed microstates or phase-space trajectories (prior information C).
Evidently, knowledge of FC alone must be sufficient to predict any result that nature
reproduces under FC. This is precisely the information from which the MaxEnt distribution
p(i | FC) is constructed, and from which all physical observables are predicted through
expectation values taken over p(i | FC). In the less restrictive problem of estimating F from
C, the redundancy condition of equation (23) is interpreted in physical terms as the requirement
that F C is reproducibly selected under C. In statistical terms, reproducible behaviour simply
means the most probable behaviour: it is reproducible precisely because it is characteristic of
each of the overwhelming majority of microscopic states or paths consistent with the imposed
constraints [2, 3].

To summarize, MaxEnt is a statistically based physical selection principle which extends
Boltzmann’s insight to non-equilibrium systems. It predicts the reproducible (i.e. most
probable) behaviour selected under given constraints. However, the predictive success of
MaxEnt (like that of equilibrium statistical mechanics) hinges on having correctly identified
the constraints that actually apply in nature. In that respect MaxEnt (and hence the principles
of maximum dissipation and maximum flux) remains essentially a trial-and-error procedure;
its failures inform us of new constraints (new physics).

We now discuss the physical interpretation of the dissipation function D as entropy
production. Recently the author applied MaxEnt to the non-equilibrium stationary behaviour of
a finite system (volume V, boundary 	) exchanging energy and matter with its environment [3].
There the possible outcomes consisted of microscopic phase-space paths 
 over a finite time
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interval τ . The constraints Fk took the general form of initial values (at t = 0) of some
scalar density at each point x ∈ V, denoted here by ρ(x, 0), together with the time-averaged
values of the outward normal component of the corresponding flux density at each point
x ∈ 	, denoted by F̄ n(x), where the overbar indicates a time average over the interval t ∈
(0, τ ). The construction of the MaxEnt path distribution p
 then proceeded as described
above: the sum over k in equation (5) passes over, in the continuum limit, to spatial integrals
over V and 	, giving

m∑
k=1

λkfk(i) →
∫

V

α(x)ρ(x, 0)
 dV +
∫

	

η(x)F̄ n(x)
 dA (24)

where α(x) and η(x) are Lagrange multipliers associated with ρ(x, 0) and F̄ n(x), respectively.
Contributions like equation (24) arising from different scalar densities ρ (e.g. internal energy,
mass) combine additively. As shown in [3], α(x) on the boundary is related to η(x) through
the local continuity equation that applies to each path 
, ∂ρ(x, t)
/∂t = −∇ ·F (x, t)
 +
Q(x, t)
, in which Q is a local source; specifically we find η(x) = −τα(x)/2. Therefore the
exponent (path action) of the MaxEnt path distribution becomes

m∑
k=1

λkfk(i) →
∫

V

α(x)ρ(x, 0)
 dV − τ

2

∫
	

α(x)F̄ n(x)
 dA. (25)

The inclusion of the local density constraints ρ(x, 0), embodied in the first term of
equation (25), leads to a physical interpretation of the Lagrange multiplier α(x) and hence
of the second term in equation (25). Specifically, the requirement that p
 corresponds to
the Gibbs grand-canonical distribution in the equilibrium limit, F̄ n(x) = 0, implies α =
−1/kBT when ρ is the internal energy density and α = µ/kBT when ρ is the mass density of
some chemical species, where T is temperature, µ is the species chemical potential and kB is
Boltzmann’s constant.

Retaining these identifications, we may consider the MaxEnt distribution constructed
from the surface flux constraints alone, whose path action is the second term in equation (25),

m∑
k=1

λkfk(i) → −τ

2

∫
	

α(x)F̄ n(x)
 dA. (26)

The point here is that now all the constraint functions are anti-symmetric (sensu equation (11)):
the allowed microscopic paths 
 (whether they are governed by deterministic or stochastic
equations of motion) can be grouped in pairs related by path reversal, under which F̄ n(x)
 is
anti-symmetric. Therefore maximum dissipation applies as described above. When F̄ n(x) is
the internal energy flux density (α = −1/kBT), for example, the mean dissipation is

D = 2
m∑

k=1

λkFk → τ

kB

∫
	

F̄ n(x)

T (x)
dA (27)

which may be identified with the (dimensionless) thermodynamic entropy exported across 	

during interval τ by heat flow; analogous contributions to D from mass flows across 	 combine
additively. In the steady state, equation (27) may also be written as the volume integral

D = τ

kB

∫
V

{
F̄ (x) · ∇

(
1

T (x)

)
+

Q̄(x)

T (x)

}
dV (steady-state) (28)

which is the corresponding thermodynamic entropy production within V, the two terms in
the integrand representing thermal and frictional dissipation, respectively. In physical terms,
therefore, maximum dissipation translates to maximum entropy export, or equivalently in the
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steady state, maximum entropy production (MEP). Note, however, that stationarity is not a
necessary condition for maximum entropy export; in equation (27), F̄ n(x) could represent the
surface flux at x averaged over a small time interval τ during the (non-stationary) macroscopic
evolution of the system.

We illustrate these general results with two physical examples. First, in Rayleigh–Bénard
convection a fixed temperature gradient is imposed across a fluid layer enclosed between two
horizontal conducting surfaces, corresponding to the case of prescribed λ∗ (inverse temperature
gradient). In this one-dimensional problem, MEP then implies that the selected steady-state
vertical heat flux across the fluid (F ) is given by the maximum value of F allowed under λ∗;
this result may also be seen more directly as an application of the maximum flux principle. An
analogous result holds for the momentum flux across a fluid layer subjected to a fixed shear.
These upper bound transport principles have been shown to reproduce several key features of
the observed vertical profiles of temperature and velocity in steady-state thermal and shear
turbulence [11]. Alternatively, imposing a fixed heat input (prescribed F ∗) leads to selection
of the maximum (inverse) temperature gradient (λ) allowed by F ∗.

Secondly, within a simple 10-box zonal model of Earth’s climate, Paltridge [12] showed
that MEP reproduces the observed zonal distributions of meridional heat transport, surface
temperature and cloud fraction with remarkable accuracy. This application corresponds to
the less restrictive problem where the variables Fk (horizontal heat flux between boxes k and
k + 1) and λk (inverse temperature gradient between boxes k and k + 1) are free variables
to be selected by the imposed constraints C (steady-state energy balance under prescribed
solar radiation inputs at the top of the atmosphere). Paltridge’s analysis also included
the supplementary hypothesis that within each zone the surface-to-atmosphere convective
transport of sensible and latent heat is maximal for a given configuration of horizontal
heat fluxes Fk in the atmosphere and oceans. This additional ‘convection hypothesis’—
which predicts the homeostatic regulation of surface temperature by clouds [13]—is another
example of the maximum flux principle obtained here from MaxEnt, in which it is assumed
that adjustment of vertical convection occurs over a much shorter timescale than adjustment
of the Fk . These and other applications of MEP are discussed in [14]. Except in the simplest
cases, most physical applications of MEP correspond to the less restrictive problem of variable
F and λ rather than prescribed F ∗ or λ∗.

The present derivation of MEP from MaxEnt refines and generalizes the less rigorous
argument advanced previously [3]. It demonstrates explicitly the relationship between MEP
and the FT via the orthogonality property of the dissipation function D, and furthermore shows
how MEP, the FT and orthogonality of D are generic properties of MaxEnt distributions under
anti-symmetric constraints. It also makes clear that in physical applications MEP applies to
the entropy production of those linearly independent fluxes that are free to vary under the
imposed constraints.

Finally, we comment briefly on the relationship between MaxEnt and previous theories
of irreversible processes due to Onsager [4], Prigogine [5] and Ziegler [6]. Jaynes [1, 2]
already noted that Onsager-type reciprocity relations (equation (7)) emerge naturally as generic
properties of MaxEnt distributions, independently of any underlying physical assumptions. In
addition, Županović et al [15] showed recently for the case of linear flux–force relationships
that MEP is equivalent to the Onsager–Rayleigh principle of ‘least dissipation of energy’
(despite the name), and that MEP manifests itself as Kirchoff’s loop law in linear electric
networks and their analogues in chemical reaction networks [16]. In this work, the constitutive
relations between F and λ derived from the FT (equations (15) and (16)) provide nonlinear
generalizations of Onsager’s linear flux–force relations, and imply that the Onsager–Rayleigh
principle (MEP) may be extended to systems far from equilibrium.
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As noted after equation (22), Prigogine’s principle of minimum entropy production [5] can
be interpreted within the MaxEnt formalism as a special case of the behaviour of the dissipation
function D(λ) under variations in λ that are restricted to the plane π (c∗). Maximum dissipation
is a more general result which describes the behaviour of D(λ) under all possible variations
in λ permitted by the imposed constraints and thus represents a physical selection principle
under given constraints. MEP applies both close to and far from equilibrium.

In Ziegler’s formalism [6], a dissipation function � = �kAk
(d)vk was defined in terms

of dissipative forces Ak
(d) and corresponding velocities vk , with � being considered the

fundamental quantity from which the dissipative forces were to be derived. Assuming �

is given as a function of the vk alone, Ziegler derived the orthogonality condition Ak
(d) ∝

∂�/∂vk on the grounds that it is the only possible vectorial relation between Ak
(d) and �. Then

the principle of maximum dissipation followed as above. Ziegler’s formalism is discussed
further in the context of Earth’s climate in [13]. MaxEnt provides a more fundamental
statistical basis for the orthogonality condition. In MaxEnt the fundamental quantity is not the
dissipation function D but the information entropy H, from whose maximization D emerges
as a derived quantity. Via the FT, MaxEnt establishes MEP as a physical selection principle
for the most probable configuration of macroscopic fluxes under given constraints.
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Appendix. Maximum dissipation and maximum flux principles under
arbitrary constraints

Given the prior information C, let there be m linearly independent unknowns Fk (1 � k � m).
We wish to estimate the values of Fk from knowledge of C alone. This estimate, denoted by
F C , must satisfy the redundancy condition, equation (23), as well as the upper bound constraint
on the dissipation function, D(F ) � Dmax(C), within the domain of F-space compatible with
C. The nature of the constraint C is otherwise arbitrary. The distribution p(i | C) from which
F C is to be estimated is obtained from MaxEnt by maximizing the information entropy

H(C) = −
n∑

i=1

p(i | C) log p(i | C) (A.1)

subject to the three constraints

H(C) = S(F CC) (A.2)

〈D〉 ≡
n∑

i=1

p(i | C)D(f(i)) � Dmax(C) (A.3)

n∑
i=1

p(i | C) = 1. (A.4)
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In equation (A.2), S(F CC) is the MaxEnt information entropy of the conditional probability
p(i | F CC), and the estimate F C is to be recovered from p(i | C) in the usual way
(equation (2)),

F C =
n∑

i=1

p(i | C)f(i). (A.5)

Inequality constraints like equation (A.3) can be incorporated into MaxEnt in a similar way to
equality constraints [17]. We introduce the Lagrangian function

ψ = H(C) + α(H(C) − S(F CC)) + β(〈D〉 − Dmax(C)) + γ

(
n∑

i=1

p(i | C) − 1

)
(A.6)

in which α, β and γ are Lagrange multipliers. The only difference with regard to treatment
of the inequality constraint on 〈D〉 is that now we have two possibilities: either β = 0 and
〈D〉 is strictly less than Dmax(C) (the constraint is inactive) or β 	= 0 and 〈D〉 = Dmax(C) (the
constraint is active, i.e. maximum dissipation). Setting ∂ψ/∂p(i | C) = 0 yields the solution

p(i | C) = 1

Z(α, β)
exp

{
β

1 + α
D(f(i)) +

α

1 + α

m∑
k=1

λk(F C)fk(i)

}
(A.7)

in which λk arises from differentiating S(F CC) with respect to Fk as in equation (9), and the
partition function Z(α, β) is a normalization factor arising from equation (A.4).

For the case β = 0 (constraint on 〈D〉 inactive), we have

p(i | C) = 1

Z(α, 0)
exp

{
α

1 + α

m∑
k=1

λk(F C)fk(i)

}
. (A.8)

Comparing equation (A.8) with equation (5), we see that in this case p(i | C) coincides with the
MaxEnt distribution p(i | F̃C) specified by the Lagrange multiplier λ̃ = αλ(F C)/(1 + α),
and its information entropy is therefore given by S(C) = S(F̃C). As established in the
main text, the value λ = λ(F C) maximizes the dissipation function D(λ) subject to the
constraint D(λ) = 2λ · F C , and consequently D(λ(F C)) > D(λ̃) for any finite α. Because
the D-surface is essentially an inverted copy of the S-surface (see the main text), this last
inequality implies that S(F CC) < S(F̃C) = S(C) in violation of the redundancy condition
(equation (A.2)). The case β = 0 is thereby excluded.

The redundancy condition can only be satisfied when β 	= 0, i.e. the inequality constraint
must be a strict equality: 〈D〉 = Dmax(C). In many practical applications (e.g. physical systems
with a large number of microscopic degrees of freedom) we can ignore fluctuations in f around
its mean value F C (i.e. 〈D〉 = D(F C)), and we therefore have D(F C) = Dmax(C). The MaxEnt
estimate of F from the constraint C then coincides with the value of F that maximizes the
dissipation function under C.

In the special case where C admits only one unknown F and where F itself has an upper
bound Fmax(C), the same analysis with equation (A.3) replaced by

〈F 〉 ≡ F C =
n∑

i=1

p(i | C)f (i) � Fmax(C) (A.9)

shows that the only estimate of F from C satisfying both the redundancy condition
(equation (A.2)) and the upper bound constraint on F is F = Fmax(C). In physical applications
this result corresponds to various maximum flux principles (see the main text).
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