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Abstract – We propose the extension of the spectral action principle to fermions and show that
the neutrino mass terms then appear naturally as next-order corrections.
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Introduction. – The problem whether neutrino is a
massive or a massless particle, which seemed to be one
of the long-standing puzzles of particle physics, seems to
be solved by now. Convincing strong evidence of neutrino
oscillations, coming from various experiments ([1], see [2]
for a review of further results), gave the necessary exper-
imental proof. Still, the subject is far from being closed
for theoretical and experimental physics as there remain
open, at least, three major questions: whether all neutri-
nos are indeed massive, whether they are Majorana fermi-
ons, and, probably one of the most fascinating —still, if
massive, why their masses are so small.
There exist, of course, various possible theoretical mech-

anisms, which could be, in principle, verified experimen-
tally (see, for instance, [3] for a review). Here, we would
like to address the issue from the point of view of geom-
etry. In fact, none of the fundamental symmetry princi-
ples seemed to enforce the neutrino to be massless. Only
recently (compared to the time-scale of neutrino investi-
gations), the early application of methods of noncommu-
tative geometry suggested that massless neutrinos agree
with the geometry of the Standard Model described as a
finite spectral triple or, in other words, a zero-dimensional
manifold, satisfying Poincaré duality in K-theory [4–6].
The fact that the observed neutrinos are massive indi-

cated that the model was not very realistic and has led to
some modified propositions, which admit massive neutri-
nos and see-saw mechanism. This, however, required some
adjustments to the notion of geometry, in particular, the
geometry of the finite space was required to have a homo-
logical dimension different from 0 (mod 8) [7,8].
There are probably many possible ways to adapt the

model and its axioms to the physical reality, or to interpret
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the physical data within the existing framework with slight
changes of the particle content of the model [9].
Here, we shall discuss a possible mechanism, which

relates the earlier explanations [10] with the current
formalism of spectral geometry. This will have the advan-
tage of providing not only the explanation for the mass
but also for its scale, while leaving the original geometry
untouched.

Standard Model and geometry. – Within the
framework of noncommutative geometry, the standard
Dirac operator has a natural extension by a finite-
dimensional matrix, which has a natural interpretation
of the mass matrix and mixing angles —we shall not
discuss here in detail the restrictions set on this matrix by
the spectral triple axioms (like the order-one condition).
Let us briefly remind that for a manifold, the Dirac
operator satisfies certain commutation rules with the
chirality γ and the charge conjugation C operators,
which (we consider only even dimensions) are fixed. The
difference between Minkowski and Euclidean approach is
in the mutual relations between the charge conjugation
and the chiral projections: in 1+3 dimensions charge
conjugation necessarily changes chirality, which is not the
case in 0 or 4 dimensions.
The new notion of the Dirac operator allows for possible

finite components of D, so that it becomes

D= γµ∂µ+ωs+DF, (1)

where ωs is the spin connection andDF is a linear operator
on the full Hilbert space. The existence of this finite matrix
component leads to the introduction of additional gauge
fields that could be naturally identified with the Higgs
doublet.
However, what is crucial for us is the assumption that

the action function is purely spectral, that is, for the
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bosonic part it is taken as a cutoff trace of the Dirac
operator [11]:

Sb =Tr f(D
2) (2)

with suitable choice of the cutoff function f .
For the fermions, one usually takes the expectation

value of D
Sf = 〈Ψ|DΨ〉. (3)

The bosonic spectral action in its asymptotic expansion
gives rise to all gravity-dependent terms, which include
the cosmological constant and the Einstein-Hilbert action
as well as all terms of the Yang-Mills-Higgs model, with
the symmetry-breaking Higgs potential. This model is
still open for possible extensions, like models including
leptoquarks [12] or extended symmetries [13].
The mass terms for fermions arise in (3) through the

nonzero expectation value of the Higgs from the minimal
couplings between the Higgs and the leptons, due to the
symmetry-breaking potential term for the Higgs doublet,
which arises naturally in (2) [6,14].
Note that the spectral action works only in the Euclid-

ean setup, hence in order to pass to the Minkowski setup,
one needs first to derive all local terms and then Wick
rotate them.
We shall ignore this issue and also we shall not assume

any particular noncommutative geometry model, thus not
touching the fermion-doubling problem [15,16] and the
need of reducing the product of the Hilbert spaces to a
certain physical subspace (as in [8]). Instead, we take a
minimalist approach and consider only the spectral action
of the already given part of the Dirac operator from the
physical Standard Model.

Fermionic mass terms and neutrinos. – Majo-
rana particles are fermions, which are invariant under
the charge conjugation operation. From the mathematical
point of view, in the physically relevant Minkowski setup
they are real representations of the real Clifford algebra
Cliff (1, 3). It is allowed that Standard Model neutrinos
are Majorana, with a left-handed neutrino and its right-
handed antipartner (in the Minkowski setup). In princi-
ple, there are no obstacles that such particles might be
massive, and one introduces a Majorana mass term of the
form:

mlΨcLΨL+h.c., (4)

where ΨL and Ψ
c
L are chiral components of the Majorana

field Ψ.
It is important to realize that such terms are not

excluded by the Standard Model, however, to preserve the
gauge invariance, they would require the interactions of
the type [10]:

Lm = κ
(
ecLH

+− νcH0) (H+eL−H0ν), (5)

where eL, ν is the doublet of left-handed leptons, H
+

and H0 are the Higgs field components, and κ is a
coefficient (or a matrix, if we take into account flavors).

Such term, though acceptable from the classical point
of view, introduces, in the context of quantum field
theory, a nonrenormalizable interaction [17]. It is also clear
that it cannot appear in the standard noncommutative
formulation of the fermionic action (3), since the coupling
between the generalized Dirac operator and the fermions
is linear in D. The speculation that such terms arise from
quantum gravity corrections [10] gives the neutrino mass
of the range of 10−5 eV, which is much less than the
experimental estimations.
In the formulation of noncommutative geometry, an

important role is played by a finite spectral triple, that
is, a geometry over a finite algebra. We shall not assume
any particular model here, taking the resulting generalized
Dirac operator and the Higgs potential for granted.

The extended spectral action principle. – In the
model-building principle of noncommutative geometry, the
main role is played by an algebra, which corresponds
to the functions on the space-time, its representation on
the Hilbert space, and the Dirac operator, which encodes
all the information about differentiation, metric as well
all internal degrees of freedom. Dirac operator could be
modified by its internal fluctuations, thus leading to a
family of operators.
The physics is set by the action (2) with a suitable

cutoff function f . The asymptotic expansion of the bosonic
action leads to leading terms providing the volume (cosmo-
logical constant), the traditional Einstein-Hilbert action of
pure gravity as well as the Yang-Mills gauge functionals
for the internal fluctuations of the Dirac operator, which
are identified as gauge fields. Clearly, one has to make
a Wick rotation to Minkowski geometry to consider the
physical fields, nevertheless the consistency with the stan-
dard physical picture is striking.
As it has been already observed by Chamseddine [18],

there is a huge difference between the bosonic and fermi-
onic (3) parts of the action in Noncommutative Geom-
etry, especially in the formulation of the spectral action
principle. At first, the bosonic (and gravitational) part
of the action depends solely on the eigenvalues (or, more
precisely, on the eigenvalue asymptotic) of the generalized
Dirac operator. This is not the case for fermion fields,
where the action principle is the expectation value of the
Dirac operator in the state set by Ψ. Thus all the eigenval-
ues of the Dirac do intervene. The generalization proposed
by [18] and tested on a simple example led to the interpre-
tation of additional terms as arising from the supersym-
metric theory.
Although Chamseddine’s efforts were concentrated on

the couplings between gauge fields and fermions, there
is still a place in such models for couplings between
discrete gauge field strength and fermions, in particular,
for coupling between two fermions and a term quadratic
in the Higgs. The spectral approach to the action in
noncommutative geometry offers a feasible theoretical
mechanism for the appearance of such terms.
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First of all, one might consider a total action of the type:

S =Tr f
(
(D+PΨ)

2
)
, (6)

where f is some cutoff function and PΨ is a projection on
the field Ψ.
To give an example of what are the consequences,

consider the terms in the asymptotic expansion that
shall arise. Using standard results of Gilkey [19] for the
asymptotic expansion, we obtain that the relevant terms
involving fermions read

SΨ = Λ
2

∫
M

Tr (DPΨ+PΨD)+
1

360

(∫
M

−60RTrDPΨ

+180Tr (DPΨ+PΨD)
2+60Tr∆(DPΨ)

)
. (7)

The leading term in the expansion is nothing else than the
standard fermion action:∫

M

〈Ψ,DΨ〉,

which gives the minimal couplings between fermion and
gauge fields, as well as coupling between fermions and the
Higgs and then fermion masses.
The terms of the next order contain some higher-

derivative components, coupling of fermions to the scalar
curvature as well as a nonlinear coupling of the fermions
to the Dirac operator. Let us analyze the latter in more
detail. Simple calculation yields that the next-order terms
that do not involve derivatives are

Tr (DPΨ+PΨD)
2 = 3(〈Ψ|DΨ〉)2+ 〈Ψ|D2Ψ〉. (8)

From our point of view, the interesting terms are these,
which include the square of the Dirac operator.

The Ansatz. – Let us postulate a simple-minded solu-
tion to the question “how to obtain quadratic terms” (5)
using an extension of the spectral action principle. Of
course, since the minimal Standard Model alone does not
provide the answer, we must find a way so that no linear
term, giving bare neutrino mass appears but there will be a
quadratic term, originating in a nonzero contribution (8).
First, observe that the expression

(
HTσL

)
, (9)

where L is a lepton doublet, H is the Higgs doublet, and
σ is a σ2 Pauli matrix is itself gauge invariant. Recall that
under U(1)×SU(2) gauge transformations, the lepton
doublet and the Higgs field transform as follows:

L �→ hLz̄, H �→ hHz,
with h∈ SU(2), z ∈U(1). Hence, the term (9) remains
invariant due to the fact that σ intertwines the fundamen-
tal representation of the quaternions with its conjugate:

σhσ−1 = h∗. (10)

For this reason, any spinor field N , which is totally
noninteracting shall give a gauge-invariant term of the
form

〈N |HTσL〉. (11)

Clearly, adding the field N to the family of all fermion
fields is the solution, which is comparable to the addition
of sterile neutrinos.
However, we propose a way so that the effective Stan-

dard Model action (as we see it) ignores those particles.
Our Ansatz is for the spectral action including fermions
and the form of the cutoff function f that excludes a
subspace of the Hilbert space.
We assume that the full Hilbert space includes some

sterile, noninteracting (i.e., one which is not in the repre-
sentation of the discrete algebra) fermion N . Furthermore,
instead of taking f to be scalar-valued, let us assume that
in addition to the cutoff in the eigenvalues of D, the func-
tion projects on a subspace of the Hilbert space, which
consists of all fermions, which are in the representation
of the discrete algebra. One can explain this restriction
saying that the spectral action presents an effective action
up to some fixed energy scale and the cutoff is imple-
mented also by the restriction to some subspace of the
Hilbert space.
If we look now at the spectral action:

Seff =Trph fΛ((D+PΨ)
2), (12)

we see that neither the bosonic part nor the standard
fermionic part (i.e., linear in D) shall change with respect
to the well-known action of the Standard Model. The
difference shall appear, however, at the level of correction
terms, that is, second-order with respect to the leading
term. There, we shall see contributions from D2, which
are exactly of the form

σH∗HTσ.

Even though the details of the effective action depend
on the particular form of f , it is not important for
our considerations. The modified action provides just
corrections to the original action (3) of order o( 1Λ2 ).
If we take the value of the cutoff parameter [11] Λ=

1015GeV and estimate the resulting neutrino mass (taking
the coefficient in the term to be of order 1), we obtain the
values of order 10−2 eV, which agrees with the current
experimental data. In fact, it was pointed out that such
order of neutrino mass suggests in turn [17] that the scale
of 1015GeV (which is well below the Planck scale) is the
one at which one can expect to change the effective model.

Conclusions. – We have shown that a minimal adjust-
ment of the contents of the Standard Model together with
the extension of the spectral action principle to fermions
might provide an explanation of the small neutrino mass.
Clearly, the correction terms have no measurable influence
on the masses of other particles as they are many orders
of magnitude smaller. In the case of originally massless

10007-p3



A. Sitarz

neutrino this correction shall be, however, a leading term.
Therefore, even within the simplest description of the
Standard Model in noncommutative geometry, it is possi-
ble to generate a neutrino mass via correction from the
spectral action. We presented argument for one family, but
its generalization to many generations is straightforward.
Of course, the terms are not renormalizable. However, we
might treat the model as an effective one and the neutrino
mass term as effective at a given energy scale. Incidentally,
the extra gravity terms that appear in the spectral action
principle as next-order corrections to the Einstein-Hilbert
action lead to similar problems.
If we take the noncommutative geometry description

and the spectral action as an approximation of the real
geometry, then the cutoff parameter Λ of the bosonic
action has a natural physical meaning of the scale of
possible fluctuations of the geometry. It is conceivable
that the physics observed at today’s energy scales is
the restriction of some more general model. The spectral
action appears to be well-suited for this purpose.
The proposition shown in this paper indicates a way

of introducing the neutrino mass in a purely dynamical
way. Although the term (5) that induces this mass at the
nonzero Higgs expectation value is not new, the method
of obtaining it is set into the noncommutative geometry.
Since the part of the Hilbert space, which is cut off through
the spectral action, corresponds to some hypothetical
particles of the sterile neutrino type, one might view it
as a form of see-saw mechanism [20]. Although no direct
mass of the extra particles is needed, the cutoff mechanism
allows for the appearance of correction terms, which are
significant only in the case of originally massless neutrinos.
Note that contrary to the see-saw mechanism, we do not
need to justify the nondynamical and large mass terms
for the sterile neutrinos, as in our case the role of the
“see-saw weight” is played by the cutoff parameter. We
believe that the possibility appears to be feasible and
requires more research on the action principle for fermions
and quantum theory of fields in this noncommutative
setup. Finally, let us mention that since the presented
model keeps the postulate that there are only left neutrino
currents, the experimental results (in particular, from
neutrinoless double β decay) might distinguish whether
the “discrete” noncommutative geometry description of
the Standard Model is right or wrong. We believe that

the geometric approach, that we advocate here, might
also shed new light on the issues of physics beyond the
Standard Model.
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