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Abstract – A statistical description of the all-particle cosmic-ray spectrum is given in the 1014 eV
to 1020 eV interval. The high-energy cosmic-ray flux is modeled as an ultra-relativistic multi-
component plasma, whose components constitute a mixture of nearly ideal but nonthermal gases
of low density and high temperature. Each plasma component is described by an ultra-relativistic
power-law density manifested as spectral peak in the wideband fit. The “knee” and “ankle”
features of the high– and ultra-high–energy spectrum turn out to be the global and local extrema
of the double-logarithmic E3-scaled flux representation in which the spectral fit is performed.
The all-particle spectrum is covered by recent data sets from several air shower arrays, and can
be modeled as three-component plasma in the indicated energy range extending over six decades.
The temperature, specific number density, internal energy and entropy of each plasma component
are extracted from the partial fluxes in the broadband fit. The grand partition function and the
extensive entropy functional of a non-equilibrated gas mixture with power-law components are
derived in phase space by ensemble averaging.

Copyright c© EPLA, 2013

Introduction. – The high– and ultra-high–energy
cosmic-ray flux (1014–1020 eV) [1] has been measured by
air shower arrays such as Tibet-III [2], KASCADE [3],
KASCADE-Grande [4], IceCube [5], HiRes-I and II [6],
the Telescope Array [7,8] and the Pierre Auger Observa-
tory [9], as well as by the HEGRA [10], AKENO [11],
GAMMA [12], Yakutsk [13] and AGASA [14] arrays. Here,
the goal is to give a statistical description of the broad-
band spectrum by means of classical ultra-relativistic
power-law distributions. We fit the all-particle spectrum
with the flux density of a dilute three-component plasma
(non-equilibrated, with components at different temper-
ature) and locate the “knees” and “ankles” [1,15–17] of
the spectrum. The knees are identified as the peaks of
the power-law distributions of the plasma components,
and the ankles turn out to be the minima in the cross-
over regimes of the partial fluxes. These extrema clearly
emerge in the E3-scaled flux representation employed in
the wideband fit.

We sketch the basic thermodynamic formalism of classi-
cal ultra-relativistic power-law ensembles and nonthermal

(a)E-mail: tom@geminga.org

mixtures thereof, starting with the spectral number den-
sity parametrized with the Lorentz factor. We then define
the specific number count and the internal energy of the
gas components, as well as their entropy density. After
this overview, we discuss the phase-space measure and
probability density of nonthermal power-law ensembles,
and derive the grand canonical partition function and the
extensive entropy functional of multi-component power-
law mixtures involving different particle species at differ-
ent temperature.

We discuss the practical aspects of broadband spec-
tral fitting with flux densities of classical unequilibrated
(stationary non-equilibrium) power-law mixtures in the
ultra-relativistic regime, and perform the spectral fit of
the all-particle cosmic-ray spectrum above 1014 eV. The
spectral flux density of a power-law distribution admits a
power-law ascent linear in the log-log flux representation,
and a curved descending power-law slope. The curvature
is caused by the exponential cutoff determined by the
temperature parameter of the Boltzmann factor [18,19].
The broadband spectrum of the all-particle mixture con-
sists of overlapping spectral peaks generated by the partial
fluxes of the individual plasma components. By choosing a
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suitable flux representation (double-logarithmic E3F (E)),
we find secondary knees and ankles in the all-particle spec-
trum. We calculate the thermodynamic parameters of
each gas component, and estimate the entropy production
of high-energy cosmic rays.

Mixtures of ultra-relativistic gases in station-
ary non-equilibrium. – An ultra-relativistic classical
gas mixture composed of nonthermal power-law compo-
nents is defined by the spectral number density

dρmix(γ) =
M∑
i=1

dρi(γ),

dρi(γ) =
m3

i si

2π2(h̄c)3
e−βiγ−αi

Gi(γ)

√
γ2 − 1γdγ,

(1)

parametrized by the Lorentz factor γ. The positive spec-
tral functions Gi(γ) in the denominator of the power-law
components dρi(γ) are normalized as Gi(1) = 1 and are to
be determined from a spectral fit. An M -component mix-
ture is composed of particle species (Zi, mi), i = 1, . . . , M ,
where mi is the mass and Zi the (positive or negative) inte-
ger charge number (in multiples of the electron charge e >
0) of the particles in the respective component (Zi, mi).
The mass parameter mi is a shortcut for mic

2, so that
E = miγ is the particle energy in an ideal gas mixture. si

is the spin multiplicity and βi = mi/(kBTi) the dimension-
less temperature parameter, with Boltzmann constant kB.
The mixture need not be equilibrated, admitting compo-
nents at different temperature. The densities (1) are based
on grand canonical partitions, allowing a fluctuating par-
ticle number via the dimensionless real fugacity parameter
αi, which is related to the chemical potential μi of each
gas component by αi = −βiμi/mi, and zi = e−αi is the
fugacity. The ensemble average leading to (1) is discussed
in the next section. The spectral function Gi(γ) is a linear
combination of two power laws,

Gi(γ) = γδi
gi(γ)
gi(1)

, gi(γ) = 1 + aiγ
σi , (2)

where δi and σi are real power-law exponents and the
amplitude ai is positive. Spectral functions of this type
are thermodynamically stable [18] and suitable to model
wideband spectra [20–22]. Quantized power-law ensem-
bles with ai = 0 have been studied in [23,24].

The total particle number Nmix =
M∑
i=1

Ni and the inter-

nal energy Umix =
M∑
i=1

Ui of a nonthermal gas mixture in

a volume V are determined by the partial densities dρi(γ)
in (1),

Ni = V

∫ ∞

γcut
i

dρi(γ), Ui = miV

∫ ∞

γcut
i

γdρi(γ). (3)

The lower integration boundary is the cutoff Lorentz factor
γcut

i ≥ 1, referring to particles of a given species (Zi, mi)

with energies exceeding Ecut
i = miγ

cut
i , and adjusted to

the energy range of the available data sets. The ultra-
relativistic limit of the power-law densities dρi(γ) is ob-
tained by replacing

√
γ2 − 1 → γ in (1) and is applicable

if γcut
i � 1. The thermal relativistic Maxwell-Boltzmann

distribution is recovered with δi = 0, gi(γ) = 1 and
γcut

i = 1 as lower integration boundary in (3).
The partition function of a gas component (Zi, mi) is

denoted by Z(Zi,mi). Since particle number and inter-
nal energy are related to the grand partition function by
Ni = −(log Z(Zi,mi)),αi and Ui = −mi(log Z(Zi,mi)),βi , we
can identify the partition function Zmix of a nonthermal

mixture as log Zmix =
M∑
i=1

ξi, where ξi = log Z(Zi,mi) and

ξi = V
4πsim

3
i

(2πh̄c)3
e−αi

∫ ∞

γcut
i

e−βiγ

Gi(γ)

√
γ2 − 1γdγ. (4)

Apparently ξi = Ni holds for this classical distribution,
and Zmix is the product of the individual components
Z(Zi,mi). Zmix depends on the temperature variables
βi and the fugacity parameters αi; the latter can
be parametrized by particle number and temperature,
αi(βi, Ni/V ), by solving (4). The entropy of a nonthermal
gas mixture is an extensive quantity,

Smix =
M∑
i=1

Si, Si = kB

(
log Z(Zi,mi) +

βi

mi
Ui + αiNi

)
,

(5)
obtained from an ensemble average of power-law
partitions, see the next section.

Power-law partitions of multi-component mix-
tures in phase space. – We give a probabilistic deriva-
tion of the classical spectral number density dρmix(γ)
of an ultra-relativistic gas mixture in stationary non-
equilibrium, cf. (1). To this end, we consider the phase
space of n particles of a gas component (Zi, mi) labeled
by charge number and mass in an M -component mixture,
i = 1, . . . , M . The phase-space measure of component
(Zi, mi) is

d3n
(Zi,mi)(p, q) =

1
(2πh̄)3n

d3p1d3q1d3p2d3q2 · · ·d3pnd3qn,

d3pk =
4πm3

i

c3

√
γ2

k − 1γkdγk, k = 1, . . . , n. (6)

The d3qk integrations range over a volume V , and the
dγk integrations refer to the interval γcut

i ≤ γk ≤ ∞, cf.
after (3), where γcut

i is the cutoff Lorentz factor of the re-
spective gas component (Zi, mi). The angular integration
over the solid angle dΩ has been carried out in (6) and
gives the factor 4π. The scale factor (2πh̄)3n renders the
measure dimensionless.

Probability density and grand partition function of mix-
tures with power-law components. The probability den-
sity on the n-particle states of a gas component (Zi, mi)
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factorizes as

f (Zi,mi)
n (p, q) =

sn
i

n!
b(Zi,mi)
n (p, q)h(Zi,mi)

n (p, q),

b(Zi,mi)
n = exp

(
− ξi − βi

n∑
k=1

γk − αin

)
,

h(Zi,mi)
n = exp

(
−

n∑
k=1

log Gi(γk)
)

. (7)

The factor 1/n! accounts for the indistinguishability
within the particle species labeled (Zi, mi), and the pos-
itive integer si for the spin multiplicity of this compo-
nent. βi = mi/(kBTi) is the temperature parameter of
the respective gas component, and ξi is a normalization
constant.

The normalization condition for the phase-space prob-
ability of an M -component mixture is∫ ∞∑

n1,...,nM=0

M∏
i=1

f (Zi,mi)
ni

(p, q)d3ni

(Zi,mi)
(p, q) =

M∏
i=1

∫ ∞∑
n=0

f (Zi,mi)
n (p, q)d3n

(Zi,mi)(p, q) = 1, (8)

where summation and integration sign can be inter-
changed, as well as the integration and product signs.
The (p, q) variables of the density and measure will oc-
casionally be omitted. The integrals in (8) factorize into
one-particle states, and normalization is achieved by iden-
tifying ξi = log Z(Zi,mi) in (7) with the partition function
(4). Thus,

Z(Zi,mi) =
∞∑

n=0

sn
i

n!

∫
exp

(
−βi

n∑
k=1

γk − αin

)
h(Zi,mi)

n d3n
(Zi,mi), (9)

for each gas component (Zi, mi). The partition function

of an ideal mixture factorizes, Zmix =
M∏
i=1

Z(Zi,mi), or ad-

ditively ξmix = log Zmix.
Entropy of a nonthermal gas mixture. The expecta-

tion values of particle number and internal energy of a gas
component (Zi, mi) read

∞∑
n=0

∫
nf (Zi,mi)

n (p, q)d3n
(Zi,mi)(p, q) =

− dξi

dαi
= 〈n〉(Zi,mi) = Ni, (10)

∞∑
n=0

∫ (
mi

n∑
k=1

γk

)
f (Zi,mi)

n (p, q)d3n
(Zi,mi)(p, q) =

−mi
dξi

dβi
= 〈u〉(Zi,mi) = Ui, (11)

where u = mi

n∑
k=1

γk, and Ni = ξi, cf. (4). The spec-

tral number density (1) follows from the phase-space

average (10). The total particle count Nmix and internal
energy Umix are obtained by summing over the particle

species, cf. (3). The total entropy Smix =
M∑
i=1

Si of the

mixture is found by adding the partial entropies defined
by the average

Si = −kB

∫ ∞∑
n=0

sn
i

n!
h(Zi,mi)

n b(Zi,mi)
n log b(Zi,mi)

n d3n
(Zi,mi),

(12)
which is the expectation value 〈s〉(Zi,mi) of the phase-space

random variable s = kB(ξi + βi

n∑
k=1

γk + αin),

Si = kB

∫ ∞∑
n=0

(
ξi + βi

n∑
k=1

γk + αin

)
f (Zi,mi)

n d3n
(Zi,mi).

(13)
The partial entropies Si stated in (5) are recovered
from (13) by substitution of the averages (10) and (11).

Spectral flux densities of nonthermal mixtures.
– We write the components of the total spectral number
density dρmix in (1) as

dρi(E)
dE

= 4π
m2

i sie−αi

(2πh̄c)3
gi(1)
gi(γ)

γ1−δie−βiγ
√

γ2 − 1, (14)

with spectral function gi(γ) in (2), and replace the Lorentz
factor by the particle energy γ = E/mi. The mass
mi stands for mic

2, si is the spin degeneracy of compo-
nent (Zi, mi), cf. after (1), and zi = e−αi the fugacity.
βi = mi/(kBTi), and δi is a real power-law exponent. The
amplitude of the second power law in gi(γ) = 1 + aiγ

σi

is positive, ai ≥ 0, and we will use positive exponents σi.
Hence,

dρi(E)
dE

=
4πsie−α̂i

(2πh̄c)3
E2−δie−β̂iE

1 + âiEσi

√
1 − m2

i

E2 , (15)

where we introduced the shortcuts β̂i = 1/(kBTi), âi =
ai/mσi

i and

α̂i = αi − log(1 + ai) − δi log mi. (16)

We also note e−α̂i = zim
δi

i (1 + ai). We will use dimen-
sionless quantities: E and mi in eV units, and the units
chosen for length, time and temperature are, respectively,
meter, second and kelvin.

The spectral flux density of a gas component is found
by multiplying the number density (15) with the particle
velocity υi = c

√
1 − m2

i /E2,

Fi(E) =
c

4π

√
1 − m2

i

E2

dρi

dE
=

csie−α̂i

(2πh̄c)3
E2−δie−β̂iE

1 + âiEσi

(
1 − m2

i

E2

)
. (17)

Density Fi(E) is the number flux density per steradian;
the energy flux is obtained by rescaling Fi(E) with E.

19001-p3



Roman Tomaschitz

Table 1: Thermodynamic parameters of the ultra-relativistic number densities dρi/dE, cf. (15), generating the flux components
Fi=1,2,3(E) of the all-particle spectrum in fig. 1. Ni/V is the specific number density and Ui/V the energy density of the
respective plasma component, calculated via (21) with lower cutoff energy Ecut

i ≈ 1014 eV. Recorded are temperature Ti,
fugacity zi and chemical potential μi, cf. (20), as well as the partial entropy densities Si/V , cf. (22). The fourth row lists the
total specific densities Nmix/V , Umix/V and Smix/V of the gas mixture, cf. (3) and (5). The entropy production is mainly due
to the fugacity term in (22), and varies only weakly with particle mass, since the fugacities logarithmically enter the partial
entropies. Fugacity, chemical potential and entropy are listed for a proton gas with mp ≈ 938.27 × 106 eV. Helium nuclei with
mass mHe ≈ 3.97mp produce an entropy density of SHe

mix/(kBV ) ≈ 3.8 × 10−10, and nickel nuclei with mNi ≈ 58.7mp produce
SNi

mix/(kBV ) ≈ 4.2 × 10−10, so that the actual mass composition, which is not yet known in the energy range of fig. 1, cannot
significantly change the recorded protonic entropy estimates. At 10 GeV, the He/H abundance ratio is 0.048, and the Ni/H
ratio is about 2 × 10−4 [17].

i Ni/V [m−3] Ui/V [eV m−3 ] kBTi [eV] log zi μi [eV] Si/(kBV ) [m−3 ]

1 3.15 × 10−12 745 5 × 1018 −113 −5.6 × 1020 3.6 × 10−10

2 1.25 × 10−14 18 1.2 × 1019 −131 −1.6 × 1021 1.65 × 10−12

3 6.6 × 10−18 0.031 4.5 × 1020 −136.5 −6.2 × 1022 9.1 × 10−16

mix 3.2 × 10−12 763 – – – 3.6 × 10−10

Wideband spectra are assembled by adding the partial

flux densities of the gas components, Fmix(E) =
M∑
i=1

Fi(E).

To locate the “knees” and “ankles” of the spectrum in
log-log plots, it is convenient to rescale Fmix(E) with a
suitable power Ek. The rescaled density EkFmix(E) is
thus obtained by adding the partial fluxes

EkFi(E)[eVk−1m−2sr−1s−1] = ŷi
E2+k−δie−β̂iE

1 + âiEσi

(
1−m2

i

E2

)
,

(18)
where we defined the amplitude

ŷi =
csie−α̂i

(2πh̄c)3
≈ 0.3146 × 1027 si

2
e−α̂i , (19)

using dimensionless quantities, cf. after (16). In the ultra-
relativistic regime, we can drop the factor 1 − m2

i /E2 in
(18). Typically, the partial density (18) has a peak defined
by an ascending power-law slope E2+k−δi and a descend-
ing slope E2+k−δi−σi terminating in exponential decay.
The fitting parameters are the amplitudes ŷi, âi and the
exponents δi, σi determining location, height and the two
power-law slopes of each peak, as well as the temperature
parameter β̂i defining the exponential cutoff.

The chemical potential μi = −αi/β̂i, temperature and
fugacity of each gas component can be extracted from the
fitting parameters, cf. (16) and (19):

zi =
e−α̂i

mδi

i (1 + âim
σi

i )
, e−α̂i ≈ 3.18 × 10−27 2

si
ŷi, (20)

and μi[eV] = kBTi log zi, with kBTi = 1/β̂i. All quanti-
ties are measured in units stated after (16). The specific
particle density Ni/V in (3) reads

Ni

V
[m−3] =

4π

c
ŷi

∫ ∞

Ecut
i

E2−δie−β̂iE

1 + âiEσi

√
1 − m2

i

E2 dE, (21)

where the lower energy cutoff (integration boundary) is
related to the Lorentz factor by Ecut

i = miγ
cut
i . The en-

ergy density Ui/V [eV m−3], cf. (3), is obtained by adding

a factor E to the integrand in (21). The specific densities
Ni/V and Ui/V become independent of the particle mass
mi in the ultra-relativistic regime m2

i /Ecut2
i 
 1, where

the root in the integrand (21) can be dropped, so that the
mass is absorbed in the fitting parameters. The partial
entropies (5) are assembled from the specific number and
energy densities,

1
kB

Si

V
[m−3] = (1 − log zi)

Ni

V
+

1
kBTi

Ui

V
, (22)

where we have put αi = − log zi in (5). Fugacity and
temperature are extracted by way of (20). In the ultra-
relativistic limit, we do not need to know the mass of the
particles to calculate the specific number and energy den-
sities (21) from the spectral fit. However, mass enters the
entropy density through the fugacity, cf. table 1.

The multi-component plasma of high-energy cos-
mic rays. – The fit of the all-particle cosmic-ray spec-
trum in fig. 1 is performed with the ultra-relativistic limit
of the flux density Fmix(E), cf. (18). We scale this density
with E3, defining fmix = E3Fmix(E), so that

fmix(E) =
M∑
i=1

fi, fi(E) ∼ ŷi
E5−δie−β̂iE

1 + âiEσi
. (23)

The fitting parameters in (23) are the power-law
exponents δi, σi, the amplitudes ŷi, âi, and the tempera-
ture parameters β̂i = 1/(kBTi) of the plasma components
(Zi, mi), i = 1, . . . , M , cf. after (1). E is measured in
eV units. The ultra-relativistic limit applies, since the
fit is done above the cutoff energy Ecut

i ≈ 1014 eV where
m2

i /Ecut2
i 
 1, cf. the caption to table 1. In this limit,

the mass-squares m2
i can be absorbed in the amplitudes

ŷi, âi, cf. (16) and (19); the spin multiplicity is si = 2.
The all-particle spectrum is fitted with three compo-

nents, the flux densities fi = E3Fi(E) generating the

19001-p4



Power-law partition and entropy production of high-energy cosmic rays

Fig. 1: (Colour on-line) All-particle cosmic-ray flux in the 1014–1020 eV range. Data points from Tibet-III [2], IceTop/IceCube-
40 [3], KASCADE [4], KASCADE-Grande [5], HiRes-I and HiRes-II [6], Telescope Array (Surface Detector) [7,8], and the
Pierre Auger array [9]. The solid curve is a plot of the ultra-relativistic flux Fmix(E) (the total spectral number-flux density,
scaled with E3 in the figure) as stated in (23); the fitting parameters can be read off from the analytic representation of the
flux components fi = E3Fi(E) in (24)–(26). The fit Fmix(E) is obtained by adding the partial fluxes Fi=1,2,3(E) depicted as
dashed and dotted peaks in the figure. The KASCADE, KASCADE-Grande and Auger data are rescaled to the Tibet-III data;
the scale factors are indicated in the figure legend. The error bars of the data sets at lower energy are suppressed to avoid
cluttering up the figure. The primary knee (maximum) of Fmix(E) is located at 6 × 1015 eV, a secondary ankle (minimum)
at 2 × 1016 eV, a second knee at 7.5 × 1016 eV, the primary ankle at 5 × 1018 eV, and a third ultra-high–energy knee at about
3 × 1019 eV. The two ankles are the troughs in the cross-over regions of the partial fluxes, and the three knees are the spectral
peaks. Each spectral component Fi has a power-law ascent linear in the log-log plot, followed by a descending power-law slope
which is slightly bent because of the Boltzmann factor, cf. (23) and table 1.

overlapping peaks depicted in fig. 1:

f1(E) =
5.75 × 1024(E/Ê1)5−4.67

1 + 0.95(E/Ê1)2.10
e−2×10−3(E/Ê1), (24)

f2(E) =
25 × 1024(E/Ê2)5−3.63

1 + 6.0(E/Ê2)1.63
e−8.3×10−3(E/Ê2), (25)

f3(E) =
8.7 × 1024(E/Ê3)5−3.8

1 + 3.3(E/Ê3)2.90
e−1.1×10−1(E/Ê3), (26)

where Ê1 = 1016, Ê2 = 1017 and Ê3 = 5 × 1019 are en-
ergy scales in eV, which are roughly determined by the
location of the peaks, but otherwise arbitrarily chosen.
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The introduction of an adaptable energy scale for each
peak is useful in wideband fits, to keep the actual fit-
ting parameters of each peak (the numerical constants
in (24)–(26)) moderate or, in the case of the amplitudes,
comparable. The fitting parameters (amplitudes ŷi, âi

and exponents δi, σi, β̂i, i = 1, 2, 3) can be read off
from the partial densities (24)–(26) by comparison with
(23), taking into account the numerical scaling factors
Êi. Once these parameters are determined, one can cal-
culate the specific particle and internal energy densities
Ni/V [m−3] and Ui/V [eV m−3] of the three plasma com-
ponents via (21). The temperature of each component is
obtained from β̂i, cf. after (20), the fugacity and chemical
potential via (20), and the partial entropies via (22), cf.
table 1.

Conclusion. – We have treated the all-particle spec-
trum of cosmic rays above an energy threshold of 1014 eV
as dilute multi-component plasma at high temperature.
The statistical description given here does not involve any
hypothetical assumptions on cosmological source or cut-
off mechanisms. The contribution of the Coulomb in-
teraction [25,26] to the partition function is negligible,
since e2/(4πrkBTi) 
 1, with interparticle distance r =
(Nmix/V )−1/3 and fine-structure constant e2/(4πh̄c) ≈
1/137. (Temperature and specific particle density of each
component are listed in table 1.) High-energy cosmic
rays can thus be considered as ideal gas mixture, un-
equilibrated though, because of the power-law factors in
the distribution functions and the different temperatures
of the partial densities (1). Ultra-relativistic power-law
partitions admit an extensive and stable entropy func-
tional [18], based on a grand canonical phase-space av-
erage, and this also holds true for non-equilibrated ideal
mixtures, as the partition function factorizes, cf. (9).

The three flux components of the all-particle spectrum
depicted in fig. 1 differ in size but not structurally. Each
of the partial fluxes admits an ascending power-law slope
and a slightly curved decaying slope due to the exponen-
tial cutoff in the spectral number density. The power-law
exponents and the temperature parameters of the three
spectral components constituting the high-energy wide-
band are quite comparable, cf. (24)–(26). The descending
slope of the third ultra-high–energy peak is not yet well
determined by the presently available data points, as illus-
trated by the large spread of the residuals in this region,
and a fourth peak above 1020 eV is possible [1,14].

The spectral power-law densities (15) of the three
plasma components have been empirically determined
from the spectral fit in fig. 1, cf. (24)–(26), and the
thermodynamic parameters are listed in table 1. In the
scaled flux representation E3F (E) employed in the broad-
band fit, the primary knee of the all-particle spectrum
at 6 × 1015 eV and the ankle at 5 × 1018 eV are the
global extrema of the flux density. We have identified two
secondary knees as local maxima generated by the spec-
tral peaks of the partial fluxes, and one secondary ankle as
local minimum in the cross-over region between the first
and second peak, cf. the caption to fig. 1.
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