Table of contents

Volume 28

Number 9, 7 May 2011

Previous issue Next issue

SELECTED ARTICLES FROM THE 8th INTERNATIONAL LISA SYMPOSIUM, (STANFORD UNIVERSITY, CALIFORNIA, USA 28 JUNE–02 JULY 2010)

Buy this issue in print

Editorial

090301

and

The international research community interested in the Laser Interferometric Space Antenna (LISA) program meets every two years to exchange scientific and technical information. From 28 June–2 July 2010, Stanford University hosted the 8th International LISA Symposium. The symposium was held on the campus of the SLAC National Accelerator Laboratory. Many of the foremost scientific and technological researchers in LISA and gravitational wave theory and detection presented their work and ideas. Over one hundred engineers and graduate students attended the meeting. The leadership from NASA and ESA research centers and programs joined the symposium.

A total of 280 delegates participated in the 8th LISA Symposium, and enjoyed the scientific and social programs. The scientific program included 46 invited plenary lectures, 44 parallel talks, and 77 posters, totaling 167 presentations. The one-slide introduction presentation of the posters is a new format in this symposium and allowed graduate students the opportunity to talk in front of a large audience of scientists. The topics covered included LISA Science, LISA Interferometry, LISA PathFinder (LPF), LISA and LPF Data Analysis, Astrophysics, Numerical Relativity, Gravitational Wave Theory, GRS Technologies, Other Space Programs, and Ground Detectors. Large gravitational wave detection efforts, DECIGO, and LIGO were presented, as well as a number of other fundamental physics space experiments, with GP-B and STEP being examples. A public evening lecture was also presented at the symposium. Professor Bernard Schutz from the Albert Einstein Institute gave a general audience, multimedia presentation on `Gravitational waves: Listening to the music of spheres'. For more detailed information about the symposium and many presentation files, please browse through the website: http://www.stanford.edu/group/lisasymposium

The Proceedings of the 8th International LISA Symposium are jointly published by Classical and Quantum Gravity (CQG) and Journal of Physics: Conference Series (JPCS). The plenary lectures are published in CQG, while most parallel talks and posters are being published in JPCS. At the recommendation of the science organization committee (SOC) other selected work from the conference will also appear in CQG. All papers in CQG have been screened through the journal's regular peer review process.

We gratefully acknowledge the support of the CQG and JPCS Publishers and staff for the publication of the proceedings. The symposium and proceedings are generously sponsored by L'Agenzia Spaziale Italiana, the California Institute of Technology, EADS Astrium Germany, the KACST Foundation Saudi Arabia, the LIGO collaboration, the Max-Planck Institute in Potsdam, Germany, NASA, and the National Science Foundation. Stanford University made very significant contributions through the Dean of Research Office, the Department of Applied Physics, the Department of Physics, the Hansen Experimental Physics Laboratory (HEPL), and the SLAC National Accelerator Laboratory. We thank the Stanford local organization committee (LOC), administration and professional staff, KACST engineers, and graduate students for their support of the symposium operations.

LISA is one of the most tantalizing yet challenging scientific space missions ever. The 8th International LISA Symposium and publication of the proceedings contribute to its progress.

Sasha Buchman and Ke-Xun Sun Stanford University Guest Editors

Committee Lists

090401

Science Organising Committee (SOC)

Tom Abel, Stanford University Odylio Aguiar, Instituto Nacional de Pesquisas Espaciais Tal Alexander, Wizemann Institute Peter Bender, University of Colorado Pierre Binetruy, APC - College de France Sasha Buchman, Stanford University Robert Byer, Stanford University Manuela Campanelli, University of Texas Joan Centrella, NASA/Goddard Massimo Cerdonio, University of Padova Eugenio Coccia, University of Roma-2 Neil Cornish, Montana State University Michael Cruise, University of Birmingham Curt Cutler, NASA/JPL Karsten Danzmann, University of Hannover Sam Finn, Penn State University Jens Gundlach, NPL Gerhard Heinzel, Max-Planck-Institut fuer Gravitationsphysik Craig Hogan, University of Washington Jim Hough, University of Glasgow Scott Hughes, MIT Oliver Jennrich, ESTEC Philippe Jetzer, University Zurich Seiji Kawamura, National Observatory, Japan Alberto Lobo, ICE-CSIC and IEEC Avi Loeb, Harvard University Piero Madau, Lick Observatory Yannick Mellier, IAP, Paris Peter Michelson, Stanford University Guido Mueller, University of Florida Sterl Phinney, Caltech Tom Prince, NASA/JPL Doug Richstone, University of Michigan Bernard Schutz, AEI Potsdam Tuck Stebbins, NASA/Goddard Tim Sumner, Imperial College, London Ke-Xun Sun, Stanford University Kip Thorne, Caltech Michele Vallisneri, NASA/JPL Alberto Vecchio, University of Birmingham Jean-Yves Vinet, OCA, Nice Stefano Vitale, University of Trento Rai Weiss, MIT Nick White, NASA/Goddard

Local Organising Committee (LOC)

Sasha Buchman (Stanford University) Robert Byer (Stanford University) Sara Charbonneau-Lefort (Stanford University) Nancy Christianson (Stanford University) John Conklin (Stanford University) Dan DeBra (Stanford University) Jan Goebel (Stanford University) Vivian Drew (Stanford University) Ke-Xun Sun (Stanford University) Lucy Zhou (Stanford University) Andrea Zoellner (Stanford University)

List of Participants

090402

A full list of participants and group photo is available in the pdf provided.

Papers

094001

, , , , , , , , , et al

LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun–Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

094002

, , , , , , , , , et al

This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

094003

, , , , , , , , , et al

Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.

094004

, , , , , , , , , et al

The LISA Pathfinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper, we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.

094005

, , , , , , and

Galactic cosmic-rays (GCRs) and solar energetic particles (SEPs) affect observations on board long-lived space missions. We developed a parameterization of proton and helium fluxes for various levels of solar modulation during opposite polarity periods. In addition to long-term variations (decades), short-term fluctuations (minutes to days) were considered as well. In particular, we focused on data from experiments carrying magnetic spectrometers in space. The shortest GCR variations we were able to study are of the order of hours. We point out that GCR variations and fluctuations are strongly energy dependent. The detector charging onboard space experiments is also energy dependent. The measurements of energy differential fluxes and their variations are needed in order to evaluate properly the performance of future space missions. We present here the projections for the GCR fluxes and solar events at the time of LISA (Laser Interferometer Space Antenna) Pathfinder (LISA-PF).

094006

, , , , , , , , , et al

As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.

094007

, , , , , , , , , et al

Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of time delay interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.

094008

, , , , , and

The Laser Interferometer Space Antenna (LISA) is required to reduce two important noise sources by post-processing on the ground using time-delay interferometry (TDI): phase noise of the on-board reference clocks and laser frequency noise. To achieve the desired suppression, the TDI algorithm needs measurements of the differential clock noise between any two spacecraft and inter-spacecraft ranging measurements with at least 1 m accuracy, which is beyond the precision of ground-based measurements for deep space missions. Therefore, we need on-board measurements by transmitting clock noise and ranging information between the spacecraft as auxiliary functions of the laser link. This paper reports our current experimental results in clock noise transfer and ranging for noise subtraction via post-processing as well as additional data transfer.

094009

, and

The laser frequency stabilization subsystem is one of the most significant parts within the interferometric measurement system of LISA. Arm locking as a proposed frequency stabilization technique synthesizes an adequately filtered linear combination of the interferometry signals as a frequency reference. Until now all the benchtop experiments on arm locking verified only the basic single arm locking configuration with unrealistic short signal travel times. At the University of Florida we developed the hardware-based University of Florida LISA Interferometer Simulator (UFLIS) to study and verify laser frequency noise reduction and suppression techniques under realistic LISA-like conditions. These conditions include the Doppler shifts between the spacecraft, LISA-like signal travel times, realistic laser frequency and timing noise. In this paper we will report about preliminary experiments on advanced arm locking schemes including dual arm locking and modified dual arm locking with realistic 33 s light travel times. In our experiments the implementation of a dual/modified dual arm locking sensor and controller is realized using several digital signal processing boards. We demonstrated the closed-loop stability of arm locking setup and measured the noise suppression in these experiments.

094010

, , , and

LISA will use quadrant photoreceivers as front-end devices for the phasemeter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photoreceivers. Some of the limiting noise sources have been identified and their contribution has been either measured or derived from the measured data. We have built a photoreceiver with a 0.5 mm diameter quadrant photodiode with an equivalent input current noise of better than 1.8 pA Hz−1/2 below 20 MHz and a 3 dB bandwidth of 34 MHz.

094011

, , , , , , , , , et al

The objectives of the DECi-hertz Interferometer Gravitational Wave Observatory (DECIGO) are to open a new window of observation for gravitational wave astronomy and to obtain insight into significant areas of science, such as verifying and characterizing inflation, determining the thermal history of the universe, characterizing dark energy, describing the formation mechanism of supermassive black holes in the center of galaxies, testing alternative theories of gravity, seeking black hole dark matter, understanding the physics of neutron stars and searching for planets around double neutron stars. DECIGO consists of four clusters of spacecraft in heliocentric orbits; each cluster employs three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by three pairs of differential Fabry–Perot Michelson interferometers. Two milestone missions, DECIGO pathfinder and Pre-DECIGO, will be launched to demonstrate required technologies and possibly to detect gravitational waves.

094012

, , , , , , , , , et al

A brief status report of an ongoing scientific case study of the Advanced Laser Interferometer Antenna (ALIA) mission is presented. Key technology requirements and primary science objectives of the mission are covered in the study. Possible descope options for the mission and the corresponding compromise in science are also considered and compared. Our preliminary study indicates that ALIA holds promise in mapping out the mass and spin distribution of intermediate mass black holes possibly present in dense star clusters at low redshift as well as in shedding important light on the structure formation in the early Universe.

094013

, , , , , , , , , et al

Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

094014

, , , , , and

We describe SR-POEM, a Galilean test of the weak equivalence principle (WEP), which is to be conducted during the free fall portion of a sounding rocket flight. This test of a single pair of substances is aimed at a measurement uncertainty of σ(η) < 10–16 after averaging the results of eight separate drops, each of 40 s duration. The WEP measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz–1/2. We address the two sources of systematic error that are currently of greatest concern: magnetic force and electrostatic (patch effect) force on the test mass assemblies. The discovery of a violation (η ≠ 0) would have profound implications for physics, astrophysics and cosmology.

094015

and

The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)—still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

094016

The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

094017

and

One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker–Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M ≲ 5 × 106M (i.e. nuclei in the range of LISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ∼10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ∼250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ∼102–7 × 102 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5 years, respectively), depending on the detailed assumptions regarding LISA detection capabilities.

094018

, , and

LISA will detect gravitational waves from tens to hundreds of systems containing black holes with mass in the range 104M–107M. Black holes in this mass range are not well constrained by current electromagnetic observations, so LISA could significantly enhance our understanding of the astrophysics of such systems. In this paper, we describe a framework for combining LISA observations to make statements about massive black hole populations. We summarize the constraints that LISA observations of extreme-mass-ratio inspirals might be able to place on the mass function of black holes in the LISA range. We also describe how LISA observations can be used to choose between different models for the hierarchical growth of structure in the early Universe. We consider four models that differ in their prescription for the initial mass distribution of black hole seeds, and in the efficiency of accretion onto the black holes. We show that with as little as 3 months of LISA data, we can clearly distinguish between these models, even under relatively pessimistic assumptions about the performance of the detector and our knowledge of the gravitational waveforms.

094019

Close pairs of white dwarfs are potential progenitors of type Ia supernovae and they are common, with the order of 100–300 million in the Galaxy. As such they will be significant, probably dominant, sources of the gravitational waves detectable by LISA. In the context of LISA's goals for fundamental physics, double white dwarfs are a source of noise, but from an astrophysical perspective, they are of considerable interest in their own right. In this paper I discuss our current knowledge of double white dwarfs and their close relatives (and possible descendants) the AM CVn stars. LISA will add to our knowledge of these systems by providing the following unique constraints: (i) an almost direct measurement of the galactic merger rate of DWDs from the detection of short period systems and their period evolution, (ii) an accurate and precise normalization of binary evolution models at shortest periods, (iii) a determination of the evolutionary pathways to the formation of AM CVn stars, (iv) measurements of the influence of tidal coupling in white dwarfs and its significance for stabilizing mass transfer, and (v) discovery of numerous examples of eclipsing white dwarfs with the potential for optical follow-up to test models of white dwarfs.

094020

, , , and

What are the properties of accretion flows in the vicinity of coalescing supermassive black holes (SBHs)? The answer to this question has direct implications on the feasibility of coincident detections of electromagnetic (EM) and gravitational wave (GW) signals from coalescences. Such detections are considered to be the next observational grand challenge that will enable testing general relativity in the strong, nonlinear regime and improve our understanding of evolution and growth of these massive compact objects. In this paper, we review the properties of the environment of coalescing binaries in the context of the circumbinary disk and hot, radiatively inefficient accretion flow models and use them to mark the extent of the parameter space spanned by this problem. We report the results from an ongoing, general relativistic, hydrodynamical study of the inspiral and merger of black holes, motivated by the latter scenario. We find that correlated EM+GW oscillations can arise during the inspiral phase followed by the gradual rise and subsequent drop-off in the light curve at the time of coalescence. While there are indications that the latter EM signature is a more robust one, a detection of either signal coincidentally with GWs would be a convincing evidence for an impending SBH binary coalescence. The observability of an EM counterpart in the hot accretion flow scenario depends on the details of a model. In the case of the most massive binaries observable by the Laser Interferometer Space Antenna, upper limits on luminosity imply that they may be identified by EM searches out to z ≈ 0.1–1. However, given the radiatively inefficient nature of the gas flow, we speculate that a majority of massive binaries may appear as low luminosity AGN in the local universe.

094021

During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspiraling BH system will interact strongly—on a purely Newtonian level—with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.