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Abstract
The spacetime Ehlers group, which is a symmetry of the Einstein vacuum field
equations for strictly stationary spacetimes, is defined and analysed in a purely
spacetime context (without invoking the projection formalism). In this setting,
the Ehlers group finds its natural description within an infinite-dimensional
group of transformations that maps Lorentz metrics into Lorentz metrics and
which may be of independent interest. The Ehlers group is shown to be well
defined independently of the causal character of the Killing vector (which
may become null on arbitrary regions). We analyse which global conditions
are required on the spacetime for the existence of the Ehlers group. The
transformation law for the Weyl tensor under Ehlers transformations is obtained
explicitly. This allows us to study where, and under what circumstances,
curvature singularities in the transformed spacetime will arise. The results
of the paper are applied to obtain a local characterization of the Kerr–NUT
metric.

PACS numbers: 0420, 0240

1. Introduction

Strictly stationary spacetimes (i.e. spacetimes admitting a Killing vector which is timelike
everywhere) can be conveniently studied by using the projection formalism introduced by
Geroch [1], which consists in factoring out the action of the Killing field by projecting all
spacetime objects onto the set of trajectories of the Killing vector. This method has been used
extensively especially because Einstein’s field equations simplify notably in this formalism (see
[2] for a recent review on time-independent gravitational fields). It was used, for instance, to
find that Einstein’s vacuum field equations for stationary spacetimes admit a finite-dimensional
symmetry group (i.e. a group of transformations that maps solutions into solutions). This is
the so-called Ehlers group [1, 3], which has been applied to many problems, ranging from the
discovery of new solutions (see, e.g., [4]) to the proof that the vacuum field equations in the
stationary and axially symmetric case form an integrable system ([5] and, for example, [6] and
references therein).
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Despite the power of the projection formalism, there are circumstances in which it cannot
be applied. For instance, the set of trajectories of the Killing vector may fail to be a smooth
manifold. This is no problem when only local considerations are relevant because for any
point in the spacetime, there always exists a sufficiently small neighbourhood of it such that
the quotient set is a smooth manifold. However, for problems involving global aspects the
question does become important and one should investigate whether the set of trajectories
is a smooth manifold. This is, in general, difficult (see, however, [7] for a set of necessary
conditions for the quotient to be a smooth manifold). A second, and perhaps more important,
shortness of the projection formalism is that stationary spacetimes may develop ergospheres
and horizons. At points where the Killing vector becomes null, the metric in the manifold
of trajectories becomes degenerate and the projection formalism cannot be used. This makes
this formalism unsuitable for studying most of the problems concerning stationary rotating
black holes (in particular, their uniqueness properties) because the whole domain of outer
communication cannot be covered by the method. A similar problem arises for some rapidly
rotating objects, which may also have an ergosphere in their exterior (a rotating disc of dust
[8], for instance, shows this behaviour).

Thus, some other method must be used to analyse problems in which the projection
formalism cannot be used. A natural approach is to work directly on the spacetime and use
only spacetime objects. In general, this is more difficult because the action of the Killing vector
has not been factored out and the very existence of the Killing vector still needs to be imposed
on the spacetime. Nevertheless, this method can be used in all situations where the projection
formalism fails. Furthermore, working directly on the spacetime sometimes gives new insights
into the problem. This method have been used recently to obtain local [9] and semilocal [10]
characterizations of the Kerr metric which hold everywhere (including the ergorsphere and/or
the black hole region) and which involve spacetime objects only.

The Ehlers group mentioned above was defined within the projection formalism and is
known to map locally a strictly stationary vacuum solution into another strictly stationary
vacuum solution (locally means that there exists a suitably small open neighbourhood of
any point where the Ehlers transformation can be defined). This is generally sufficient for
generating new vacuum solutions, because one can apply the transformation locally and,
if desired and possible, the transformed spacetime can be extended to a maximal solution.
However, there are other problems in which understanding the global properties of the action
of the Ehlers group is important. For instance, there are approaches [11, 12] for proving
uniqueness theorems for stationary black holes which make use of the Ehlers transformation
(and its generalization to other nonlinear sigma models). However, this can only be justified
as long as the global properties of the Ehlers transformation can be controlled. Thus,
studying in detail the global requirements for the existence of the Ehlers transformation
becomes necessary. As discussed above, the projection formalism is not suitable to analyse
this kind of problem. Furthermore, the Ehlers group is defined only on regions where the
Killing vector is timelike or spacelike and it is not clear a priori whether it can be smoothly
extended through ergospheres or horizons. Explicit examples suggest that this extension can
be performed, but no general proof has been given. To answer these questions we need
to define and analyse the Ehlers group within a framework that avoids using the projection
formalism.

In this paper we perform a detailed study of the Ehlers transformation in a spacetime
setting. This will allow us to prove, first of all, that the Ehlers transformation is well defined
at points where the Killing vector is null, as one could have expected. More interestingly,
the spacetime approach will reveal several properties of the Ehlers group which are hidden
in the quotient description. In particular, we will show that the Ehlers group finds its natural
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description within an infinite-dimensional group of transformations which maps Lorentzian
metrics into Lorentzian metrics. The general form of the transformation is

g′
αβ ≡ �2gαβ − ζαWβ − ζβWα − λ�−2WαWβ, (1)

where ζ α is an arbitrary vector field, λ = −ζ αζα andWα is an arbitrary 1-form constrained to
satisfy�2 ≡ 1+ζ αWα > 0. The transformation (1) includes as particular cases the Kerr–Schild
transformation [13] (by settingWα ∝ ζα and ζ αζα = 0 everywhere) and a transformation put
forward and studied by Bonanos [14] (when ζ αWα = 0 and hence�2 = 1). Since (1) contains
the Kerr–Schild transformation as a particular case, it also allows for a generalization of Kerr–
Schild symmetries, which have been defined and studied recently in [15]. This issue, however,
will not be considered further in this paper.

The set of transformations (1) will be shown to form a group and its basic properties will be
discussed. Obviously, this full group does not map, in general, vacuum solutions into vacuum
solutions, but it is likely that suitable subsets of it (besides the Ehlers group) do have this
property. Using the spacetime description will allow us to discuss the necessary and sufficient
conditions for the Ehlers transformation to be defined globally. Related to this question, the
existence and location of curvature singularities in the transformed spacetime will be studied.
This will be done by obtaining an explicit expression for the Weyl tensor of the transformed
spacetime in terms of the original one. The transformation law turns out to be surprisingly
simple and clear. Thus, the full geometry of the transformed metric can be determined without
having to perform the Ehlers transformation explicitly. This may be particularly interesting
for stationary and axially symmetric spacetimes where the Ehlers group extends to an infinite-
dimensional group, the so-called Geroch group, which can be understood as an iteration of
Ehlers transformations with respect to different Killing vectors. The results of this paper can
also be applied to that situation.

The transformation law for the Weyl tensor will be applied to find a local characterization
of the Kerr–NUT spacetime. First, we shall obtain the simplest subset of a vacuum solution
which is invariant under Ehlers transformations. Its defining property turns out to be closely
connected to the characterization of the Kerr metric found in [9]. This indicates once
again that the Kerr metric enjoys a very privileged geometric position because it can be
characterized by a property which also arises naturally from the Ehlers group (and therefore
directly from the underlying structure of the Einstein vacuum field equations with a Killing
vector).

The paper is organized as follows. In section 2 we write down several identities which
are valid for any spacetime admitting a Killing vector, irrespective, of its causal character.
They are useful for any four-dimensional description of spacetimes with a Killing vector
(no field equations are assumed in this section). While some of these equations are well
known, others appear to be new. In section 3 we introduce an infinite-dimensional group
of transformations which maps Lorentzian metrics into Lorentzian metrics and we discuss
its basic properties. In section 4 we introduce the Ehlers group as a particular case of
this infinite-dimensional group of transformations. Then, we discuss what the requirements
are for the Ehlers transformation to exist globally and we prove that vacuum solutions are
mapped into vacuum solutions irrespective, of the causal character of the Killing vector.
This shows that the Ehlers transformation is a symmetry of the vacuum field equations
independently of whether the Killing vector has ergoregions and/or horizons. In section 5
we make use of the identities in section 2 in order to obtain the transformation law for the
Weyl tensor under Ehlers transformations. The result is surprisingly simple and elegant.
Having obtained the form of the transformed Weyl tensor, we can identify where and
under what circumstances curvature singularities in the transformed spacetime will occur.
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Finally, in section 6 we identify the simplest subset of stationary vacuum solutions which
are invariant under Ehlers transformations. We classify the orbits of the Ehlers group in this
invariant subset. The paper concludes with a spacetime characterization of the Kerr–NUT
metric, which is a direct consequence of the results in this paper combined with the results
in [9].

2. General identities for spacetimes with a Killing vector

In this paper, a Cn spacetime denotes a paracompact, Hausdorff, connected Cn+1 four-
dimensional manifold endowed with aCn metric of signature (−1, 1, 1, 1). All spacetimes are
assumed to be oriented with metric volume form ηαβγ δ . (M, g) will denote a C2 spacetime
admitting aC2 Killing vector field �ξ . The norm and twist 1-form of �ξ are defined, respectively,
by λ = −ξαξα and ωα = ηαβγ δξ

β∇γ ξ δ . In order to study spacetimes with a Killing vector of
arbitrary causal character, it is useful to employ self-dual 2-forms, which are complex 2-forms
B satisfying B� = −iB, where � is the Hodge dual operator. Our notation for p-forms is as
follows. Boldface characters are used for p-forms, non-boldface characters are used for its
components. For self-dual 2-forms, curly characters will be used (boldface for the 2-form and
non-boldface for its components).

The 2-form Fαβ ≡ ∇αξβ and its self-dual associate Fαβ ≡ Fαβ + iF�αβ will play a

fundamental role in the following. The 2-form F ≡ 1
2Fαβ dxα ∧ dxβ will be called the

Killing form throughout this paper. The Ernst 1-form σ = σµ dxµ associated with �ξ is defined
by

σµ ≡ 2ξαFαµ = ∇µλ− iωµ. (2)

Two well known (see, e.g., [16]) properties which are valid for any self-dual 2-forms X and
Y are

XµσYνσ + YµσXνσ = 1
2gµνXαβYαβ, XαβY αβ = 1

2XαβYαβ (3)

where Y = Re(Y) is the real part of Y . We now obtain some algebraic identities for F .
Directly from the definition of σ and the first equation in (3) we obtain

σασ
α = −λF2, (4)

where F2 ≡ FαβFαβ . An important identity is

ηαβµνξ
µFρν = −iξρFαβ + 1

2 iδρασβ − 1
2 iδρβσα, (5)

which can be proven by inserting Fρν = 1
2 iηρνγ δFγ δ into the left-hand side and expanding

the products of ηs. This identity also holds for an arbitrary self-dual 2-form X provided σ is
defined accordingly (see (2)). Another identity which will be useful in section 5 is

σβ∇αλ + σα∇βλ− gαβσµ∇µλ + 2ξβσ
µFαµ + 2ξασ

µFβµ − 4λFα
µFµβ (6)

= σασβ + F2
(
λgαβ + ξαξβ

)
.

This expression can be proven by splitting the real and imaginary parts. The real part of (6)
was already proven in [9]. The imaginary part is easily shown by using the first identity in (3)
(with X = Y = F).

Let us consider next identities involving covariant derivatives of the Killing form and/or
of the Ernst 1-form. They already involve the curvature of the spacetime. From ∇µ∇αξβ =
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ξνRνµαβ , which is a well known consequence of the Killing equations, the following identity
follows:

∇µFαβ = ξνRνµαβ, (7)

where Rνµαβ is the so-called right self-dual Riemann tensor defined by Rνµαβ = Rνµαβ +
1
2 iηαβρσRνµρσ . Some well known properties of Rαβγ δ are

gαλRαβλµ = Rβµ, Rαβλµ + Rαλµβ + Rαµβλ = iηγβλµR
γ
α, (8)

Rαβλµ − Rλµαβ = i
(
ηλµασR

σ
β − ηλµβσRσ α − 1

2Rηλµαβ
)
, (9)

∇αRναβµ = ∇µRνβ − ∇βRνµ + iηβµρσ∇σRρν, (10)

where Rαβ ≡ Rµαµβ is the Ricci tensor and R is the scalar of curvature. From the definition
of the Ernst 1-form and (7) we easily find

∇ασβ − 2∇αξµFµβ = 2ξµξνRναµβ, (11)

which will be of fundamental importance in section 5. We now obtain identities for the
divergence and the exterior derivative of the Ernst 1-form. Using (11) and of the properties of
Rαβγ δ , we obtain

∇ασ α = −F2 + 2ξαξβRαβ, (12)

∇ασβ − ∇βσα = 2iξνηνβµαR
µ
ρξ
ρ. (13)

Similarly, identities for the exterior derivative and the divergence of the Killing form F can
be obtained directly from (8) and the fundamental equation (7). The results are

∇µFαβ + ∇αFβµ + ∇βFµα = iηγµαβξ
νRγ ν, ∇µFµ

β = −ξνRνβ. (14)

These expressions prove the following well known lemma, which will be needed below.

Lemma 1. Let (M, g) be a smooth spacetime admitting a Killing vector �ξ and let F be its
associated Killing form. Then, the necessary and sufficient condition for F to be closed is that
Rαβξ

β = 0.

Finally, we write down identities for the covariant Laplacian of Fµν and σµ, i.e. ∇α∇αFµν
and ∇α∇ασµ. Since expanding the second covariant derivatives in these expressions would
lead to a rather long calculation, we recall the well known Weitzenböck formula (see, e.g., [17])
which relates the covariant Laplacian and the Hodge–Laplace operator ∆ ≡ dδ + δd acting
on p-forms, where d is the exterior differential and δ is the codifferential, δ = (−1)p �−1 d �.
For any p-form Ω we have

(∆Ω)α1···αp = −∇µ∇µ�α1···αp −
p∑
q=1

(−1)qRβαq�βα1···α̂q ···αp

+2
∑
r<q

(−1)r+qRβαr
γ
αq�βγα1···α̂r ···α̂q ···αp . (15)

∆F is easily calculated from (14) after using the general equation (δΩ)α2···αp = −∇µ�µα2···αp .
The result is

(∆F)αβ = ∇α
(
ξνRνβ

)− ∇β (ξνRνα)− iηαβρσ∇σ (ξ νRρν).

With this expression at hand, the covariant Laplacian of Fαβ follows from (15). The result
takes a simpler form if the Riemann tensor is decomposed into the Ricci and the Weyl tensors



724 M Mars

Cαβγ δ . In particular, after defining the self-dual Weyl tensor as Cνµαβ = Cνµαβ + 1
2 iηαβρσCνµρσ ,

the identity becomes

∇α∇αFµν = − 1
2FαβCαβµν + ∇ν

(
ξ δRδµ

)− ∇µ
(
ξ δRδν

)
+ iηµνρσ∇σ

(
ξ δRδ

ρ
)

+ 1
3RFµν. (16)

Finally, we evaluate ∇α∇ασµ. In this case the calculation cannot be simplified by evaluating
∆σ first because we do not have an identity for ∇αF2 yet (see (12)). So, we use the definition
σα = 2ξβFβα and expand the derivatives explicitly. A somewhat long calculation using (16)
and the Bianchi identity in (8) gives

∇α∇ασµ = −2ξ δFαβCαβδµ + 2
3Rσµ − 4ξ δRβδFβµ − σβRβµ + 2∇µ

(
ξρξσRρσ

)
+2iηγµαβ∇α

(
ξβξσRγ σ

)
.

Combining this expression with the Weitzenböck formula (15), the following identity for the
gradient of F2 is obtained

∇µF2 = 2ξνFαβCαβνµ − 2
3Rσµ + 4ξνRβνFβµ + 2σβR

β
µ.

3. Generalized Ehlers group

The standard definition of the Ehlers group [1, 3] is as follows. Consider a strictly stationary1

vacuum spacetime (V, g) (i.e. a vacuum spacetime admitting a Killing vector which is timelike
everywhere). Take the quotient set V/�ξ with respect to the orbits of the Killing vector. This
is locally a manifold (i.e. given any point p ∈ V , there exists an open neighbourhood Up of p
such that Np ≡ Up/�ξ is a manifold). There exists a well known one-to-one correspondence
between tensor fields in Np and tensor fields inUp which are Lie-constant along �ξ and which are
completely orthogonal to �ξ . The symmetric tensorλgαβ+ξαξβ has these properties and therefore
defines a symmetric tensor γij in Np which endows this space with a Riemannian structure. The
Ernst 1-form σµ associated with �ξ is closed (see (13)) and hence exact in a suitably chosenUp.
Let σ be a complex scalar inUp satisfying σµ = ∇µσ . This function σ defines a complex scalar
in the quotient Np. As shown by Geroch [1], the knowledge of Np, γij and σ is sufficient to
reconstruct locally the original spacetimeV . The action of the Ehlers group is defined by leaving
γij invariant and transforming σ according to the Möbius map σ ′ = (ασ +iβ)/(iγ σ +δ), where
α, β, γ, δ are arbitrary real constants satisfying αδ+βγ = 1. As shown in [1], the transformed
spacetime is also a solution of the Einstein vacuum field equations. The group structure of the
Ehlers group can be obtained by first applying a transformation σ ′ = (ασ + iβ)/(iγ σ + δ),
and then a second transformation σ ′′ = (α′σ ′ + iβ ′)/(iγ ′σ ′ + δ′) (where α′δ′ + β ′γ ′ = 1). The
result is σ ′′ = (α′′σ + iβ ′′)/(iγ ′′σ + δ′′) with α′′, β ′′, γ ′′, δ′′ given by(

α′′ iβ ′′

iγ ′′ δ′′

)
=
(
α′ iβ ′

iγ ′ δ′

)(
α iβ

iγ δ

)
. (17)

This expression shows, in particular, that the Ehlers group is isomorphic to SL(2,R).
As discussed in the introduction, it is desirable to have a description of the Ehlers group

solely in terms of spacetime objects, i.e. without passing through the manifold of trajectories.
We shall start by defining a much larger group of transformations which will turn out to contain
the Ehlers group as a particular case. This group of transformations is defined for an arbitrary
n-dimensional manifold and it describes the fundamental underlying structure of the Ehlers
group.
1 The Ehlers group is defined similarly when the Killing vector is spacelike everywhere.
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Let U be an arbitrary n-dimensional smooth manifold and let us denote by X(U) the
algebra of vector fields and by '1(U) the set of smooth 1-form fields on U . Let us define
G ⊂ X(U) ×'1(U) by G = {

(�ζ ,W ) ∈ X(U) ×'1(U); ζ αWα|p > −1,∀p ∈ U}. We also

define G�ζ ≡ {W ∈ '1(U); (�ζ ,W ) ∈ G}. Let S(U) denote the set of smooth, symmetric,
two-covariant tensor fields in U . The following map defines an action of G on S(U)

T :G× S(U) −→ S(U)
(
ζ α,Wβ, gαβ

) −→ T (�ζ ,W , g)αβ ≡ �2gαβ − ζαWβ − ζβWα − λ

�2
WαWβ, (18)

where ζα ≡ gαβζ
β , �2 ≡ ζ αWα + 1 and λ ≡ −ζ αζ βgαβ . Given (�ζ ,W ) ∈ G, we can also

define the map

T
�ζ

W : S(U) −→ S(U) (19)

g −→ T
�ζ

W (g) ≡ T (�ζ ,W , g). (20)

In order to show that T
�ζ

W defines a group structure on G�ζ we need to compose two such
transformations. After a calculation we find

T
�ζ

W 2 ◦ T �ζ
W 1 = T �ζ

W 2+�2
2W

1 , where �2
2 = 1 + ζ αW 2

α .

It only remains to check that W 2 +�2
2W

1 ∈ G�ζ , which follows immediately from

ζ α
(
W 2
α +�2

2W
1
α

)
+ 1 = �2

1�
2
2 > 0, (21)

where �2
1 = ζ αW 1

α + 1. Thus, the composition law in G�ζ induced by T
�ζ

W is

·: G�ζ ×G�ζ −→ G
�ζ

(
W 2,W 1

) −→ W 2 · W 1 = W 2 +
(
1 + ζ αW 2

α

)
W 1.

The unit element of (G�ζ , ·) is obviously W = 0, and the inverse of W ∈ G
�ζ is

−W /(1 + ζ αWα). In order to investigate the group structure further, let us find a suitable
set of one-parameter subgroups of (G�ζ , ·). Let W 0 be an arbitrary smooth 1-form on U (not
necessarily satisfying ζ αW 0

α + 1 > 0) and let us define the smooth real function

fW 0(t) =




exp (ζ αW 0
α t)− 1

ζ αW 0
α

at points where ζ αW 0
α �= 0

t at points where ζ αW 0
α = 0.

Thus, W (t) ≡ fW 0(t)W 0 is a smooth 1-form in U . It is a simple exercise to check that W (t)

defines a one-parameter subgroup ofG�ζ , i.e. that W (t) ∈ G�ζ and that W (s)·W (t) = W (t+s)
for all t, s ∈ R. Since '1(U) is infinite dimensional, it follows that (G�ζ , ·) is an infinite-
dimensional group which acts on the space of symmetric 2-covariant tensors.

For definiteness, we shall now restrict ourselves to the case in which U is four dimensional.
Our next aim is to show that G�ζ leaves the subset of Lorentzian metrics on U invariant, i.e.
that the signature is preserved under the action of T

�ζ
W .
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Lemma 2. Let U be a four-dimensional manifold, g be a Lorentzian metric on U and W ∈ G�ζ .
Then T

�ζ
W (g) is also a Lorentzian metric in U . Furthermore, if (U, g) is orientable with volume

formηαβµν , then (U, T �ζ
W (g)) is also orientable with volume formη′

αβγ δ = �2ηαβγ δ . In addition,

the inverse metric of T
�ζ

W (g)αβ reads

(T
�ζ

W (g)
−1)αβ = 1

�2

(
gαβ +W 2ζ αζ β + ζ αWβ +Wαζβ

)
, (22)

whereWα ≡ gαβWβ ,W 2 ≡ WαWα and gαβ is the inverse of gαβ .

Proof. We first note the following identity, valid in n dimensions:

det(a1Mij + a2bibj + a3cicj ) = an−2
1 det(Mij )

[
(a1 + a2b

2)(a1 + a3c
2)− a2a3(bc)

2
]
, (23)

where a1 �= 0, a2, a3 are arbitrary constants,Mij is an arbitrary n×n invertible matrix, bi , ci are
arbitrary n-column vectors and b2 = (M−1)ij bibj , c2 = (M−1)ij cicj and bc = (M−1)ij bicj .
This identity can be proven straightforwardly by first showing its validity when a3 = 0 (which
follows directly from the definition of the determinant) and then applying the result twice. We
want to use (23) to evaluate the determinant of (18) in an arbitrary local coordinate system.

At points p ∈ U where �ζ is non-null with respect to gαβ (i.e. λ �= 0) the tensor T
�ζ

W (g) can be
rewritten as

T
�ζ

W (g)αβ = �2

[
gαβ +

1

λ

(
ζαζβ − VαVβ

)]
(24)

where Vα ≡ ζα + λ
�2Wα . Applying (23) to this expression, we easily find det (T

�ζ
W (g)) =

�4 det(g). Similarly, at those points where �ζ is null (i.e. λ = 0), T
�ζ

W (g)αβ can be rewritten as

T
�ζ

W (g)αβ = �2gαβ − 1
2 (ζα +Wα)

(
ζβ +Wβ

)
+ 1

2 (ζα −Wα)
(
ζβ −Wβ

)
.

Applying the identity (23) to this expression we again obtain det (T
�ζ

W (g)) = �4 det(g). Thus,

T
�ζ

W (g) is invertible everywhere. Expression (22) for the inverse metric can be checked by

simple calculation. So, it only remains to show that the signature of T
�ζ

W (g)αβ is (−1, 1, 1, 1).

This is proven by noticing that any element W ∈ G�ζ can be continuously connected to the
identity. Indeed, let W be an arbitrary 1-form satisfying ζ αWα + 1 > 0 everywhere. Define
W 0 = W at points where ζ αWα = 0 and W 0 = (ζ αWα)

−1 ln
[
1 + ζ βWβ

]
W at points

where ζ αWα �= 0. It follows that W 0 is a smooth 1-form and therefore we can define its
associated one-parameter subgroup W (t) according to the procedure above. It is easy to

check that W (1) = W . Since det(T
�ζ

W (t)(g)) is non-zero everywhere for all t , it follows that
the signature must remain unchanged. �

The group G�ζ is defined for any manifold and any smooth vector field �ζ . It is not even
necessary that U be a Riemannian space. For an n-dimensional U , the transformation defined
byG contains 2n−1 arbitrary functions (2n functions are necessary to define �ζ and W but the
transformation (18) has the explicit symmetry T (K�ζ ,K−1W , g) = T (�ζ ,W , g)whereK is a
nowhere-vanishing scalar function). So, G defines a very general transformation. Obviously,
vacuum solutions are not mapped into vacuum solutions in general. However, as we shall see
below, G contains the Ehlers group as a particular case. Thus, it is plausible that there may
exist other interesting subsets of G. Exploring this problem is beyond the scope of this paper
and should be addressed elsewhere.
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The aim of the next section is to exploit the general group structure introduced in this
section in order to define the Ehlers group on spacetimes admitting a Killing vector of arbitrary
causal character.

4. Spacetime description of the Ehlers group

Let us consider a spacetime (M, g) admitting a Killing vector �ξ such that ξαRαβ = 0 and let
us define all the objects associated with �ξ as in section 2. The Ernst 1-form is closed by virtue
of (13). In order to define the Ehlers group we need to impose two global requirements on
M, which are essential for the whole construction. The first one is that σ is exact, i.e. that
there exists a complex function σ ≡ λ − iω on M (ω is called the twist potential), such that
∇ασ = σα . Under these circumstances, let us define the 2-form

4γ
[
δF �αβ + γ

(
ωF�αβ − λFαβ

)] = Re
[−4γ (γ σ + iδ)Fαβ

]
, (25)

where γ and δ are arbitrary, non-simultaneously vanishing, real constants (a bar denotes a
complex conjugate). The following chain of equalities shows that this 2-form is closed:

�d
(
Re
[
(γ σ + iδ)F]) = Re

[
�d ((γ σ + iδ)F)] = γ Re [� (F ∧ σ)]

= γ Re (iσ �F) = γ Re (−iiσF) = 0. (26)

In the second equality we have used the fact that F is closed (see (14)). In the third equality we
have used the general identity �(α∧β) = iβ �α, where α is any p-form, and β is any q-form
(q + p � dim M) and iβα denotes interior contraction. The last equality is a consequence of
FνµF δ

µ being symmetric and therefore real.
Now we have to impose the second global requirement on (M, g), namely that the 2-form

(25) is exact for all values of γ and δ, i.e. there exists a 1-form W satisfying

∇αWβ − ∇βWα = Re
[−4γ (γ σ + iδ)Fαβ

]
. (27)

Furthermore, we demand that there exists a solution W of (27) that satisfies

�2 ≡ ξαWα + 1 = γ 2λ2 + (δ + γω)2 = (iγ σ + δ) (−iγ σ + δ). (28)

Since the solution of (27) is defined up to a closed 1-form, we can always achieve (28) locally.
However, it is essential that (28) is also satisfied globally. In general, equations (27) and (28)
do not fix a unique solution yet (we can always add a closed 1-form which is orthogonal to
�ξ , for instance, σ). However, provided the global conditions discussed above are fulfilled, we
can associate to each pair of values γ and δ a unique 1-form W satisfying (27) and (28). We
will assume from now on that such a choice has been made.

Now, we can apply the general transformation T
�ξ
W defined in section 3 with respect to the

Killing vector �ξ and the 1-form W . In order to do that, we must ensure that ξαWα+1 > 0. Thus,
the points where�2 vanishes must be excluded from M beforehand. These points correspond
to λ = 0 and ω = −δ/γ (with γ �= 0). Note that the excluded points (if any) are contained in
the region where the Killing vector is null. As we shall see below, the transformed spacetime
will in general contain a curvature singularity precisely at the points we have excluded (if they
exist). Thus, from now on, and for each value of δ/γ , we exclude the set of points λ = 0 and
ω = −δ/γ from the manifold M. In order to simplify the notation, the resulting manifold
(which is in general different for each value of δ/γ ) will still be denoted by M. The meaning
of M should become clear from the context.

We can now define the transformed metric T
�ξ
W (g)αβ on M. From section 3 we know that

T
�ξ
W (g)αβ is smooth and Lorentzian. Our next aim is to prove that �ξ is also a Killing vector
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of T
�ξ
W (g)αβ . Then, we will prove that its Ricci tensor (which we denote by R′

αβ) satisfies
ξαR′

αβ = 0. This will allow us to compose transformations and prove that they define a
group.

Lemma 3. The vector field �ξ is a Killing vector of the metric T
�ξ
W (g)αβ .

Proof. By construction £�ξ � = 0. Thus, we only need to show that £ξW = 0. From the
definition of the Lie derivative we find

(
£�ξW

)
α

= ξµ (∇µWα − ∇αWµ
)

+∇α
(
�2 − 1

)
. Using

the equation

∇α�2 = 2γ Re
[
(γ σ + iδ) σα

]
, (29)

(which is a direct consequence of (28)) the vanishing of £�ξW follows immediately. �

In order to be able to compose transformations T
�ξ
W , it is necessary to determine the Killing

form associated with �ξ in the transformed spacetime
(M, T

�ξ
W (g)

)
. This is addressed in the

following lemma.

Lemma 4. The complex 2-form

F ′ = 1

(δ + iγ σ)2
[
�2F − 1

2W ∧ σ
]

(30)

is the Killing form of �ξ with respect to the metric T
�ξ
W (g)αβ .

Proof. We must show that F ′ is self-dual with respect to the metric T
�ξ
W (g)αβ and also that

Re(F ′) = 1
2dV where Vα ≡ T

�ξ
W (g)αβξ

β . To prove the first part, let us raise the indices of

F ′
αβ with respect to T

�ξ
W (g)αβ . Starting from

F ′
αβ = 1

(δ + iγ σ)2
[
�2 Fαβ + 1

2

(
Wβσα −Wασβ

)]
, (31)

a somewhat long, although straightforward, calculation gives

F ′µν ≡
[
T

�ξ
W (g)

−1
]µα [

T
�ξ
W (g)

−1
]νβ

F ′
αβ = 1

�2 (iγ σ + δ)2
[Fµν + ξµWαFαν − ξνWαFαµ

]
.

(32)

Using identity (5) and the fact that η′
αβλµ = �2ηαβλµ (see lemma 2), the self-duality of

F ′
αβ follows readily. Regarding Re(F) = 1

2dV , we first recall that Vα = ξα + λ
�2Wα .

Using equations (27) and (29) together with the fact that ∇αλ = Re(σα), the equation
∇αVβ − ∇βVα = 2 Re(F ′

αβ) follows without difficulty. �

Once we know the Killing form of �ξ in the transformed spacetime, we can compute the

Ernst 1-form of �ξ with respect to T
�ξ
W (g)αβ . From the definition (2) we find

σ ′
α ≡ 2ξβF ′

βα = σα

(iγ σ + δ)2
.

This equation implies that σ ′
α is exact on M, i.e. σ ′

α = ∇ασ ′, where the function σ ′ can be
written in the following form, which is valid for all possible values of γ and δ:

σ ′ = ασ + iβ

iγ σ + δ
, (33)
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where α and β are real constants satisfying αδ + βγ = 1.
The transformation law for F2 will be required in section 6. It is found directly from (32)

and reads

F ′ 2 = F2

(δ + iγ σ)4
. (34)

Let us now prove that ξαR′
αβ = 0. This is important because it will allow us to compose

transformations (recall that the only local conditions we imposed on (M, g) in order to define

T
�ξ
W were the existence of a Killing vector �ξ and that ξαRαβ = 0).

Lemma 5. The Ricci tensor of T
�ξ
W (g)αβ satisfies ξαR′

αβ = 0.

Proof. From lemma 1, ξαR′
αβ = 0 is equivalent to F ′ being closed. Since σ is exact and W

satisfies dW = Re
[−4γ (γ σ + iδ)F], we obtain, after making use of the definition of �2,

dF ′ = −iγ

δ + iγ σ
σ ∧ F − iγ (δ − iγ σ)

(δ + iγ σ)2
σ ∧ F +

2γ

(δ + iγ σ)2
Re
[
(γ σ + iδ)F] ∧ σ = 0.

The vanishing of this expression follows from expanding the real part of the third term and
using the identity F ∧ σ + F ∧ σ = 0, which has already been proven in (26). �

Thus, the transformations defined by W can be iterated, at least locally. However, we also

had to impose two global conditions on (M, g) in order to define T
�ξ
W . The first one (i.e. that

the Ernst 1-form is exact) has already been proven in (33)). Regarding W , we must ensure
that the exterior system (27) in the transformed spacetime is also integrable. We address this
issue as follows. Consider the transformed equation

∇αW ′
β − ∇βW ′

α = Re
[−4γ ′ (γ ′ σ ′ + iδ′

)F ′
αβ

]
, (35)

where γ ′ and δ′ are not simultaneously zero. The left-hand side of (35) is already known to
be closed, so we only need to prove that it is also exact.

Let us assume for the moment that W ′ defined by (35) exists globally and let us use the
results in section 3 in order to find its explicit expression. We first apply the transformation

corresponding to (α, β, γ, δ) to the original metric gαβ and construct T
�ξ
W (g)αβ . Then, we

apply the transformation with respect to W ′ to obtain a second metric T
�ξ
W ′(T

�ξ
W (g))αβ .

From the results in section 3 we know that T
�ξ
W ′(T

�ξ
W (g))αβ = T

�ξ
W ′′(g)αβ , where W ′′ =

W ′ + �′2W , and �′2 = 1 + ξαW ′
α = (

δ′ + iγ ′σ ′) (δ′ − iγ ′σ ′). If it were true that the
transformations defined by W form a group isomorphic to SL(2,R), then W ′′ should be
the solution of (27) corresponding to α′′, β ′′, γ ′′, δ′′, (where these constants are given by
(17)). With this information at hand, we can now prove that W ′ exists and has the desired
properties.

Let W and W ′′ be the unique solutions of (27) corresponding to α, β, γ, δ and
α′′, β ′′, γ ′′, δ′′, respectively (they exist globally on M by assumption). Let us define
α′, β ′, γ ′, δ′ as the solution of (17) (which is unique). We can also define σ ′ according to
(33) and �′2 ≡ (

δ′ + iγ ′σ ′) (δ′ − iγ ′σ ′). Finally, we define

W ′ ≡ W ′′ −�′2W . (36)

This object exists globally on M by construction and we have shown that it is the only candidate
for being the solution of (35) satisfying ξαW ′

α + 1 = �′2 (i.e. the only candidate compatible
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with the existence of an isomorphism between the group we are constructing and SL(2,R)).
We need to prove that W ′ thus defined actually solves the desired equations. Checking
ξαW ′

α + 1 = �′2 is easy from

1 + ξαW ′
α = 1 + ξαW ′′

α −�′2ξαWα = �′2 +�′′2 −�′2�2,

after taking into account the definitions of �, �′′ and �′ together with iγ ′′σ + δ′′ =(
iγ ′σ ′ + δ′

)
(iγ σ + δ). Finally, we need to check that the differential equation

dW ′ = d
(
W ′′ −�′2W

) = Re
[−4γ ′ (γ ′ σ ′ + iδ′

)F ′]
is satisfied. This can be proven by direct calculation using the differential equations satisfied
by W ′′ and W ′ together with the expression for F ′ (30).

This argument proves that the composition of transformations can now be globally
performed and that they form a group isomorphic to SL(2,R). It should be remarked
that W can be chosen freely for each value of α, β, γ, δ only for the original metric

gαβ . The corresponding choice for the transformed metrics T
�ξ
W (g)αβ is uniquely fixed by

(36).
It is easy to check that the group we have just defined coincides with the original Ehlers

group when the Killing vector is timelike (or spacelike). Indeed, this follows from the
transformation law for the metric when written as in (24), and from the transformation law
for the Ernst potential (33). In the approach we have followed no restriction on the causal
character of the Killing vector was made. This shows that the Ehlers group exists even when
the Killing vector changes its causal character throughout the spacetime. Furthermore, the
global conditions necessary for the transformation to exist on a given spacetime have been
clarified. This extended group of transformations will be called the spacetime Ehlers group in
this paper.

Although the spacetime Ehlers group has been defined for smooth spacetimes admitting
a Killing vector �ξ which satisfies ξαRαβ = 0, the vacuum subcase is particularly important
because the original Ehlers group maps vacuum solutions into vacuum solutions. Proving that
this also holds for the spacetime Ehlers group will be our next aim. There are several methods
to do this. We give a proof that exploits the group structure and which might be of interest for
more general situations (i.e. for other subsets of G�ξ ).

Let us consider an arbitrary one-parameter subgroup of the spacetime Ehlers group (i.e.
of SL(2,R)). The starting metric gαβ is transformed under this subgroup into a one-parameter

family of metrics T
�ξ
W (t)(g), all of which satisfy ξαRαβ(t) = 0. Let us now assume that g is

vacuum. The group structure of the spacetime Ehlers group implies that the one-parameter

family of metrics T
�ξ
W (t)(g) is vacuum for all t if and only if the linearized Einstein equations

around the metric T
�ξ
W (t)(g) are solved by the symmetric tensor d

dt T
�ξ
W (t)(g). Let us recall that

the linearized Einstein vacuum field equations for a perturbation hαβ around a given metric
gαβ are

Ṙαγ ≡ − 1
2∇α∇γ h− 1

2∇β∇βhαγ + 1
2∇β∇γ hαβ + 1

2∇β∇αhγβ = 0, (37)

where h = hαβg
αβ . The following lemma is used in theorem 1 below and gives the form of

the linearized equations for the case under consideration.

Lemma 6. Let (M, g) be a smooth spacetime which admits a Killing vector �ξ and satisfies
ξαRαβ = 0. Let W 0 be an arbitrary 1-form which is Lie-constant along �ξ . Then, the linearized
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Einstein field equations (37) for a symmetric tensor of the form hαβ = (ξ νW 0
ν )gαβ − ξαW 0

β −
ξβW

0
α read

−2Ṙαβ = gαβ∇γ∇γ
(
ξνW 0

ν

)
+ 2FγαKβ

γ + 2FγβKα
γ + ξα∇γKβγ + ξβ∇γKαγ = 0, (38)

where Fαβ = ∇αξβ and Kαβ = ∇αW 0
β − ∇βW 0

α . Furthermore, ifW 0
α satisfies the equations

∇αW 0
β − ∇βW 0

α = 4a1F
�
αβ, ξαW 0

α = 2 (a2 + a1ω), (39)

where a1 and a2 are arbitrary constants and ω is the twist potential of �ξ , then the linearized
equations (38) are satisfied identically.

Proof. Inserting the expression for hαβ into (37) and expanding the appropriate second
covariant derivatives we obtain, after using the Killing equations for �ξ and∇µ∇αξµ = ξµRµα =
0,

−2Ṙαβ = 2∇αξγ∇γW 0
β + 2∇βξγ∇γW 0

α + ξγ∇γ
(∇βW 0

α + ∇αW 0
β

)
+gαβ∇γ∇γ

(
ξνW 0

ν

)
+ ∇γ

[
ξα
(∇βW 0

γ − ∇γW 0
α

)
+ ξβ

(∇αW 0
γ − ∇γW 0

α

)]
. (40)

Transforming this expression into (38) is not difficult after using £�ξ (∇αW 0
β ) = 0 (which is a

direct consequence of W 0 being Lie-constant along �ξ ) in the third term of (40).
To prove the second part of the lemma, we first note that equation (39) is locally integrable

because F � is closed (from ∇µFµν = ξµRµν = 0). Furthermore,

∇βF �γβ = 1
2ηγβρσ∇β∇ρξσ = 1

2ηγβρσ ξ
µRµ

βρσ = 0,

by virtue of the first Bianchi identities. Moreover, the imaginary part of the first identity in (3)
applied to X = Y = F and the imaginary part of identity (12) read

∇β∇βω = 2FαβF
�αβ, FβαF

�β
γ + Fβγ F

�β
α = 1

2gαγ FρσF
�ρσ .

Using these expressions, the vanishing of (38) follows straightforwardly. �

We can now prove the following theorem which shows that the transformed metric of
a vacuum metric is also vacuum. In this theorem, all the global conditions required for the
existence of the Ehlers transformation are spelled out.

Theorem 1. Let (M, g) be a smooth spacetime admitting a Killing vector �ξ and satisfying the
Einstein vacuum field equations. Let δ, γ ∈ R satisfy δ2 + γ 2 �= 0. Define λ, F and σ as the
squared norm, the Killing form and the Ernst 1-form associated with �ξ . If the two following
conditions are satisfied:

(a) the Ernst 1-form is exact, i.e. it exists a complex smooth function σ ≡ λ − iω such that
σ = dσ ;

(b) the closed 2-form Re (−4γ (γ σ + iδ)F) is exact and the equation dW =
Re (−4γ (γ σ + iδ)F) admits a solution satisfyingWαξα + 1 = (iγ σ + δ) (−iγ σ + δ) ≡
�2.

Then, the symmetric tensor T
�ξ
W (g) ≡ �2g − ξ ⊗ W − W ⊗ ξ − λ

�2 W ⊗ W defines a

smooth vacuum metric on the spacetime M̃ = {
p ∈ M; λ|p �= 0 or (γω + δ)|p �= 0

}
.
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Remark. As mentioned before, conditions (a) and (b) are always fulfilled locally. So they
only pose global obstructions to the existence of the Ehlers group.

Proof. From the group structure, we have

d

dt
T

�ξ
W (t)(g) = d

ds

[
T

�ξ
W (s)

(
T

�ξ
W (t)(g)

)]∣∣∣∣
s=0

. (41)

On the other hand, the general transformation law (18) implies that, for an arbitrary symmetric
tensor g̃αβ , we have

d

ds
T

�ξ
W (s) (g̃)αβ

∣∣∣∣
s=0

=
(
ξµ

dWµ(s)

ds

∣∣∣∣
s=0

)
g̃αβ − ξ̃α dWβ(s)

ds

∣∣∣∣
s=0

− ξ̃β dWα(s)

ds

∣∣∣∣
s=0

, (42)

where ξ̃α = g̃αβξ
β and we have used the fact that W (0) = 0. Combining (41) and (42) we

obtain

d

dt
T

�ξ
W (t)(g)αβ = (

ξµW 0
µ

)
T

�ξ
W (t)(g)αβ − V (t)αW 0

β − V (t)βW 0
α ,

where V (t)α = T
�ξ
W (t)(g)αβξ

β and W 0 ≡ dW (s)

ds |s=0. The equations satisfied by W 0 can be
obtained directly from (27) and (28) after using γ (s)|s=0 = 0 and δ(s)|s=0 = 1 and read

∇αW 0
β − ∇βW 0

α = Re
[−4ia1F ′

αβ

] = 4a1F
′�
αβ, ξαW 0

α = 2
(
a2 + a1w

′),
where F ′

αβ and ω′ are the Killing form and twist potential of �ξ in the metric T
�ξ
W (t)(g)αβ and

we have defined a1 = dγ (s)
ds |s=0 and a2 = dδ(s)

ds |s=0. Thus, all the conditions of lemma 6 are

fulfilled and we can conclude that T
�ξ
W (t)(g) satisfies Einstein vacuum field equations. The

theorem follows after using that SL(2,R) is connected and that any element of a connected
Lie group G0 can be expressed as a finite product of elements in exp(G) (where G is the Lie
algebra of G0 and exp is the exponential map) (see, e.g., [18]). �

5. Action of the Ehlers group on the Weyl tensor

Our aim in this section is to obtain an explicit expression for the Weyl tensor of the Ehlers-
transformed spacetime. In order to do that we will exploit the identity (11) of section 2. More
precisely, we want to evaluate the left-hand side of this identity for the transformed metric

T
�ξ
W (g)αβ in order to obtain an expression for the transformed Weyl tensor. It is worth pointing

out that a direct calculation of the transformed Weyl tensor for the metric (18) would be quite
difficult. The identities of section 2 will allow for an indirect approach to the result.

Let us start by evaluating the covariant derivative of σ ′
α with respect to the transformed

metric. To do that it is convenient to use the following identity, which is a trivial consequence
of the vanishing of the torsion of a Levi-Civita connection,

∇′
ασ

′
β = 1

2

(∇ασ ′
β − ∇βσ ′

α

)
+ 1

2 £�σ ′T
�ξ
W (g)αβ,

where �σ ′ is the vector obtained by raising the indices of σ ′
α with the metric T

�ξ
W (g)αβ , i.e.

σ ′α ≡
[
T

�ξ
W (g)

−1
]αβ
σ ′
β = 1

(δ + iγ σ)2�2

[
σβ + ξβ

(
Wµσµ

)]
. (43)
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Using the fact that �ξ is a Killing vector for the metric T
�ξ
W (g)αβ , a not-too-long calculation

gives

∇′
ασ

′
β = ∇α

[
σβ

(δ + iγ σ)2

]
− 1

�2 (δ + iγ σ)2

×
{
σ(α∇β)�2 + σµ

[
2Fµ(αWβ) − 4γ Re

[
(γ σ + iδ)Fµ(α

] (
ξβ) +

λ

�2
Wβ)

)

+ 1
2WαWβ∇µ

(
λ

�2

)
− 1

2gαβ∇µ�2

]}
, (44)

where, as usual, round brackets enclosing indices denote symmetrization. Let us keep this
expression for later use and let us now evaluate ∇′

αξ
µF ′

µβ . We start by raising one index to

F ′
αβ with respect to the metric T

�ξ
W (g)αβ , i.e. we evaluate F ′µ

β ≡ [T
�ξ
W (g)

−1]µνF ′
νβ . The result

reads

F ′µ
β = 1

(iγ σ + δ)2

[
Fµ

β + ξµWαFα
β +

1

2�2
Wβσ

µ +
1

2�2
ξµWβσ

ρWρ

]
.

We now take into account that ∇′
αξ
µF ′

µβ = Re
(F ′

αµ

)F ′µ
ν so that only the latter has to be

calculated. A simple calculation gives

Re
(F ′

αµ

)F ′µ
β = 1

(δ + iγ σ)2
Re

[
1

(δ + iγ σ)2

(
Fαµ − 1

2�2
Wασµ

)] [
�2Fµ

β + 1
2Wβσ

µ
]
.

(45)

To proceed further we need to use two identities. The first one is valid for any complex quantity
B and reads

Re

(
B

(δ + iγ σ)2

)
= 1

�4

[
(δ + iγ σ)2 Re(B) + 2Bγλ

(
γ
σ − σ

2
− iδ

)]
, (46)

which can be proven easily from the trivial relation Re(AB) = A Re(B) + B(A−A)/2. The
second identity reads(

Fαµ − 1

2�2
Wασµ

)(
Fµ

β +
1

2�2
Wβσ

µ

)
= − F2

4�2
T

�ξ
W (g)αβ, (47)

and it is proven by expanding the left-hand side and using standard properties of self-dual
2-forms (see section 2). Inserting (46) and (47) into (45) we obtain

∇′
αξ
µF ′

µβ = 1

�2
Re

[(
Fαµ − 1

2�2
Wασµ

)](
Fµ

β +
1

2�2
Wβσ

µ

)

−F2γ λ
(
γ 1

2 (σ − σ)− iδ
)

2�4 (δ + iγ σ)2
T

�ξ
W (g)αβ. (48)

We can now combine (44) and (48) in order to obtain an explicit expression for ∇′
ασ

′
β −

2∇′
αξ
µF ′

µβ . This is achieved by using ∇µλ = Re(σµ), together with the identity Re[(γ σ +
iδ)Fαβ] = (γ σ − iδ)Re(Fαβ) + Fαβ(iδ + γ (σ − σ)/2) (which is proven in a similar way to
(47)). Two further pieces of information are required to obtain the result: identity (6) and the
relation σµFβµ + ∇µλFµβ = 0, which can be deduced from the last equality in (26).
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The calculation is now rather involved. However, many cancellations happen along the
way and the final result turns out to be surprisingly simple. It reads

∇′
ασ

′
β − 2∇′

αξ
µF ′

µβ = 1

(δ + iγ σ)2
(∇ασβ − 2∇αξµFµβ

)

− 3iγ

(δ + iγ σ)3
[
σασβ + 1

3F2
(
λgαβ + ξαξβ

)]
. (49)

This expression is valid for any spacetime for which the spacetime Ehlers group can be defined.
No restriction to vacuum spacetimes is necessary. Let us now restrict ourselves to the vacuum
case and let us define the symmetric and trace-free tensor Yαβ ≡ 2ξµξνCµανβ . Since, in
vacuum, Rαβγ δ = Cαβγ δ the transformation law of Yαβ can be obtained directly from (11) and
(49) to be

Y ′
αβ = Yαβ

(δ + iγ σ)2
− 3iγ

(δ + iγ σ)3
[
σασβ + 1

3F2
(
λgαβ + ξαξβ

)]
. (50)

This formula is the key expression for obtaining the transformation law for the full Weyl tensor.
To do that, we first rewrite (50) as follows:

ξµξνC′
µανβ = 1

(δ + iγ σ)2
ξµξν

[
Cµανβ − 6iγ

δ + iγ σ

(FµαFνβ − 1
3F2Iµανβ

)]
, (51)

where Iµανβ ≡ (gµν gαβ − gµβ gαν + i ηµανβ)/4 is the canonical metric in the space of self-
dual 2-forms. The term is parentheses in (51) is self-dual in the metric gαβ , with respect to
each pair of antisymmetric indices. On the other hand, C′

µανβ is self-dual with respect to the

metric T
�ξ
W (g)αβ . So, if we knew a method to transform self-dual 2-forms in gαβ into self-dual

2-forms in T
�ξ
W (g)αβ , we could obtain the full transformation law for the Weyl tensor. This

is addressed in the following lemma which is proven by a straightforward, if somewhat long,
calculation.

Lemma 7. Let Pµναβ be defined as Pµναβ = �2δµα δ
ν
β − δµα ξνWβ − ξµWαδνβ . Then, a 2-form Xαβ

is self-dual in (M, g) if and only if X ′
αβ ≡ Pµναβ Xµν is self-dual in (M, T

�ξ
W (g)).

Remark. This lemma is true for any spacetime (M, g) and for any pair (�ξ,W ) ∈ G, not only
for the spacetime Ehlers group we are considering in this section.

Thus, let us define the tensor

Bαβγ δ = 1

(δ + iγ σ)2
P
µν
αβ P

ρσ
γ δ

[
Cµνρσ − 6iγ

δ + iγ σ

(FαβFρσ − 1
3F2Iαβρσ

)]
,

which is, by construction, self-dual (for each pair of antisymmetric indices) with respect to

the metric T
�ξ
W (g)αβ . Furthermore, from ξαP

µν
αβ = ξµ

(
δνβ − Wβξ

ν
)
, we find ξµξνC′

µανβ =
ξµξνBµανβ . It is well know, and an easy consequence of (5), that, for an arbitrary self-dual
2-form X the following equation holds:

2λXαβ = (
ξβXα − ξαXβ − iηαβρσ ξ

ρXσ
)
,

where Xβ = 2ξαXαβ . A similar expression exists for objects with several pairs of
antisymmetric indices. Thus, we can conclude λ(C′

µανβ − Bµανβ) = 0. Now using that
Bµανβ is continuous everywhere (including the points where λ = 0), we can conclude that, for
spacetimes where the Killing vector is null at most on a set with empty interior, C′

µανβ = Bµανβ .
Summarizing, we have proven the following:
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Proposition 1. Let (M, g) be a spacetime satisfying the hypotheses of theorem 1. Assume
further that the set of points where the Killing vector is null has an empty interior. Then, the

Weyl tensor of the spacetime (M̃, T
�ξ
W (g)) reads

C′
αβγ δ = 1

(δ + iγ σ)2
P
µν
αβ P

ρσ
γ δ

[
Cµνρσ − 6iγ

δ + iγ σ

(FµνFρσ − 1
3F2Iµνρσ

)]
, (52)

where Pµναβ is defined in lemma 7 above.

Remark. The condition that �ξ is non-null almost everywhere can be shown to be unnecessary,
i.e. that proposition 1 also holds for Killing vectors with an arbitrary causal character. The
sketch of the proof is as follows. First, obtain the transformation law for the Weyl tensor under
the linearized Ehlers group for an arbitrary Killing vector. The solution turns out to be the
linearized version of (52). Then, the result follows by exploiting the group structure of the
spacetime Ehlers group.

The transformation law (52) for the Weyl tensor is very simple indeed. In addition to the

necessary factors which transform self-dual objects in g into self-dual objects in T
�ξ
W (g), the

essential part of the transformation is, besides a global conformal factor (δ + iγ σ)−2, adding
to the original self-dual Weyl tensor a term proportional to(FµνFρσ − 1

3F2Iµνρσ
)
.

This tensor is the simplest self-dual, symmetric and trace-free object that can be constructed
out of the Killing form. Taking into account that the calculations leading to this proposition
are quite long, the result is surprisingly simple and elegant. Since the curvature singularities of

(M, T
�ξ
W (g)) must be singularities in C′

µανβ , expression (52) shows that, in general, curvature

singularities in (M, T
�ξ
W (g)) appear at the points where δ + iγ σ = 0 (i.e. where λ = 0 and

ω = −δ/γ ). These points were precisely those that had to be excluded from M in order to
define the spacetime Ehlers transformation. No further singularities may appear. Thus, we
have good control on the behaviour of the transformed spacetime without having to perform
the Ehlers transformation explicitly, which may be a difficult task.

6. A local characterization of the Kerr–NUT metric

The transformation law (52) for the Weyl tensor allows us to select privileged subsets of
solutions of the Einstein vacuum field equations, namely those that remain invariant under the
Ehlers group. The transformation law given in proposition 1 suggests one of these invariant
subsets. Let us consider those vacuum spacetimes admitting a Killing vector field such that

Cαβγ δ = Q (FαβFγ δ − 1
3Iαβγ δF2

)
(53)

holds for some complex functionQ. From the results of the previous section, it is easy to see
that the Ehlers transformed self-dual Weyl tensor C′

αβγ δ retains the same form (with primed
quantities). Actually, this is the simplest possible invariant subset of the vacuum Einstein field
equations. It is remarkable that condition (53) also appears in a completely different context,
namely in a local characterization of the Kerr metric obtained in [9]. In that paper the following
result was proven:

Theorem 2. Let (V, g) be a smooth, vacuum spacetime admitting a Killing vector �ξ . Assume
that (V, g) is not locally flat and that the following two conditions hold:
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(a) there exists at least one point p ∈ V such that F2|p �= 0;
(b) the self-dual Weyl tensor and the Killing form associated with �ξ satisfy (53).

Then, the Ernst 1-form σµ is exact (σµ = ∇µσ ) and Q and F2 must take the form
Q = −6/(c − σ), F2 = A(c − σ)4, where A �= 0 and c are complex constants.

If, in addition, Re(c) > 0 and A is real, then the spacetime (V, g) is locally isometric to
a Kerr spacetime.

This theorem was not stated explicitly in this form in [9]. However, it is not difficult to
see that the proof of the main theorem in that paper also proves this theorem (see [10] for a
discussion).

This theorem suggests a natural question, namely which spacetimes correspond to the
other values of A and c? In this section we will answer this question and will obtain a local
characterization of the Kerr–NUT metric by combining the theorem above and the action of the
Ehlers group discussed in this paper. The spacetimes satisfying the hypotheses of theorem 2
can be classified by the complex constants A �= 0 and c. Since, in addition, the whole family
is invariant under the Ehlers group (the fact that the Ehlers-transformed F ′ 2 remains non-zero
somewhere follows from the transformation law (34)) we can consider the action of the Ehlers
group on the parameter space defined by A and c. Given that both the hypotheses and the
conclusions of theorem 2 are local, all the considerations below will also be local and there
are no obstructions to define and apply Ehlers transformations.

Using the transformation law for the Weyl tensor (52) and the transformation law for F2

(34) we easily find

c′ = αc + iβ

δ + iγ c
, A′ = A (δ + iγ c)4 , (54)

where c′ and A′ are the corresponding values for the Ehlers-transformed spacetime. The
parameter space defined by A and c is four dimensional and the Ehlers group has three real
parameters. Thus, there must be one real function of A and c which is invariant under Ehlers
transformations. It is easy to check that AA (c + c)4 fulfils these requirements. In order
to classify the spacetimes satisfying the hypotheses of theorem 2, we need to find a unique
representative of each orbit of the Ehlers group in the space (A, c). In order to do that, we
note that c + c transforms as

c′ + c′ = c + c

(δ + iγ c) (δ − iγ c)
.

Thus, c + c cannot change sign under an Ehlers transformation (and it must remain zero if it
was originally zero). An easy inspection of the transformation law (54) shows that the orbits
corresponding to c + c = 0 are uniquely characterized by the unit complex number A/|A|
(where the vertical bars denote the norm of the complex number). More precisely, any pair
c = is1, A = A0 exp (iB) (with s1, A0 > 0 and B being real) can be transformed into c′ = 0
and A′ = exp (iB).

Now take an arbitrary point (A, c) with Re(c) �= 0. It is easy to check that there always
exists an Ehlers transformation that brings this point into the canonical form c′ = sign(c + c)
and A′ = −|A| Re(c)2 (we have chosen a negative sign in A′ just for convenience, a positive
sign can also be achieved). So, the vacuum solutions satisfying the hypotheses of theorem 2
can be classified into three classes according to the Ehlers group as follows:

• those with Re(c) = 0, for which the orbit is determined by A/|A|;
• those with Re(c) > 0 and the orbit is determined by the real constant −|A| Re(c)2;
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• those with Re(c) < 0 and the orbit is determined by −|A| Re(c)2.

With this classification at hand, we can now use theorem 2 to obtain a purely local geometric
characterization of the Kerr–NUT spacetime. It is well known that the Kerr–NUT family of
spacetimes is obtained and exhausted by applying the Ehlers transformations to the Kerr
spacetime. Thus, the following theorem follows by combining the classification discussed
above and the results of theorem 2.

Theorem 3. Let (V, g) satisfy the hypotheses of theorem 2. If Re(c) > 0 then the spacetime
(V, g) is locally isometric to a Kerr–NUT spacetime.

This theorem extends a result by Krisch [19] who analyses the behaviour, under Ehlers
transformations, of the most general strictly stationary vacuum solution with vanishing Simon
tensor [20]. The relationship between the vanishing of the Simon tensor [21] and the
characterization of Kerr given in theorem 2 is discussed in detail in [9].

We could still ask which spacetimes correspond to a zero or a negative value of Re(c).
Without giving the proof, let us just mention that they belong to the vacuum subset of the
Plebański limit of the rotating C metric [22]. They are analogous of the Kerr–NUT spacetime,
but with the geometry of a certain quotient (defined by the stationary Killing vector and one
of the principal null directions) being not a round 2-sphere but a Euclidean plane (when
Re(c) = 0) or a Poincaré plane (when Re(c) < 0).
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