Brought to you by:

Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip

, , , , , , and

Published 21 October 2009 2009 Institute of Physics and Engineering in Medicine
, , Citation Jennifer S Cho et al 2009 Phys. Med. Biol. 54 6757 DOI 10.1088/0031-9155/54/22/001

0031-9155/54/22/6757

Abstract

It has been observed that microfluidic chips used for synthesizing 18F-labeled compounds demonstrate visible light emission without nearby scintillators or fluorescent materials. The origin of the light was investigated and found to be consistent with the emission characteristics from Cerenkov radiation. Since 18F decays through the emission of high-energy positrons, the energy threshold for beta particles, i.e. electrons or positrons, to generate Cerenkov radiation was calculated for water and polydimethylsiloxane (PDMS), the most commonly used polymer-based material for microfluidic chips. Beta particles emitted from 18F have a continuous energy spectrum, with a maximum energy that exceeds this energy threshold for both water and PDMS. In addition, the spectral characteristics of the emitted light from 18F in distilled water were also measured, yielding a broad distribution from 300 nm to 700 nm, with higher intensity at shorter wavelengths. A photograph of the 18F solution showed a bluish-white light emitted from the solution, further suggesting Cerenkov radiation. In this study, the feasibility of using this Cerenkov light emission as a method for quantitative measurements of the radioactivity within the microfluidic chip in situ was evaluated. A detector previously developed for imaging microfluidic platforms was used. The detector consisted of a charge-coupled device (CCD) optically coupled to a lens. The system spatial resolution, minimum detectable activity and dynamic range were evaluated. In addition, the calibration of a Cerenkov signal versus activity concentration in the microfluidic chip was determined. This novel method of Cerenkov radiation measurements will provide researchers with a simple yet robust quantitative imaging tool for microfluidic applications utilizing beta particles.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0031-9155/54/22/001