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High density corrections for a 
Heisenberg antiferromagnet 

M. G. COTTAMtand R. B. STINCHCOMBE 
Department of Theoretical Physics, University of Oxford, Oxford, OX1 3PQ 
M S .  received 6th April 1970 

Abstract. The high density expansions derived in the two preceding papers for the 
thermodynamic quantities and correlation functions of the spin half Heisenberg anti- 
ferromagnet are here extended to higher order, for the low temperature case. The 
(11~)’ terms in the sublattice magnetization, free energy and internal energy are evaluated 
and contact made with the interacting spin wave theory of Oguchi. The selfconsistency 
of the method in this order is demonstrated, and the criteria for the validity of the 
results determined. The spin wave damping in order (112)’ is also investigated. This 
includes spin wave scattering contributions and gives the dominant contribution at IOW 
temperatures. 

1. Introduction 
This paper presents extensions of the work of the preceding two papers (Cottam and 

Stinchcombe 1970a, b, to be referred to as I and 11) to higher order in the high density 
expansion, for low temperatures. 

In section 2 the order (112)’ terms in the expansions of the magnetization and free energy 
of the Heisenberg antiferromagnet are calculated and connection is made with the work of 
Oguchi (1960). These terms represent small corrections to the leading order results, 
evaluated in I, if the criteria for the validity of the high density expansion are satisfied. 
The terms are however of qualitative interest, since they include the first effects of spin 
wave interactions just as the order l/z terms introduced the leading effect of fluctuations, 
absent altogether from the molecular field terms. 

These are cases where the first one or two terms in the high density expansion give no 
contribution to a particular quantity and the leading contributions come from terms of 
quite high order. Other examples where the low order terms in the high density expansion 
have vanishing coefficients are the expansions of the higher virial coefficients and, as was 
noted in 11, of the low temperature spin wave damping rk. The leading nonvanishing 
contributions to rk at low temperatures are evaluated in section 3 .  

2. The magnetization and free energy in order (l/z)* 
In this section the magnetization and free energy are evaluated in order (liz)’ for the 

low temperature case only, where the results are expected to lead to a description of spin 
wave interactions. A connection will be made with the work of Oguchi (1960). 

The magnetization is here determined by calculating the one particle Green function 
C , ( k ,  E) as in I. It will be shown in subsection 2.1 that the contributions to the magnetization 
can be obtained as the field derivatives of a set of terms which also occur in the calculation 
of the corresponding free energy in subsection 2.2. Subsections 2.1 and 2.2 each conclude 
with an analysis of the results and a direct check of their order in the high density expansion. 

2.1. (1,~)’ calculation ofC , (k ,  z) 
The renormalization scheme for C , ( k ,  E )  in order (1 ’2)’ is illustrated in figure 1. All 
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Figure 1. Diagrams contributing to C , ( k ,  E )  in order (liz)’ at low temperatures. 

constituent lines are renormalized to order (l/z)”, and in diagrams 13 and 14 the vertex 
part with sublattice label 1 denotes the semi-invariant ‘ M ; - + -  of I, appendix B. The 
calculation is greatly simplified by suitably grouping these diagrams, and expressing the 
results in terms of a field derivative. 

Consider diagrams 14 .  Diagrams 1 and 2 are equal by symmetry, and at low tempera- 
tures the total a-dependent part of their contribution gives upon summation 

where ’ M l - ‘  is a semi-invariant defined in appendix B. Hence from equation (2.1) the 
contribution to C l ( k ,  z = 0) from 1 and 2 may be written as 

For diagram 3 the summation over the external frequency a gives a factor 

By using this result and expressing JT,(q,  q) as 
, 
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Equation (2.3) enables the contribution to C,(k, t = 0)  from diagram 3 to be expressed as 

4 4’ 

Equation (2.3) may be generalized to 

which is a constituent in diagrams 3, 4, 7, 8, 13, 14. Using this result the contribution from 
diagram 4 is 

Equations (2.2), (2.4) and (2.6) may be combined and written in terms of an overall derivative, 
whence the contribution to the magnetization from diagrams 1 4  is 

In a similar fashion by making use of equations (2.5) and (2.1) (or the analogous equation 
for dish, Mi - + - )  the remaining diagrams of figure 1 may be grouped and expressed in 
terms of a derivative with respect to hi. The results for diagrams 5-8 are 

(2.8) 
For diagrams 9-13, 

AR 

For diagram 14, 

AR 

The conclusions of equations (2.7) to (2.10) may be summarized as follows. The low 
temperature (1 jz)’ contribution to the sublattice magnetization may be calculated from 

(2.11) 

where Y is equivalent to the sum of the closed diagrams of figure 2. This procedure will 
now be carried out. 

In this calculation it is important to retain all sublattice labels until after the differentiation 
with respect to h,. By applying the usual rules, diagrams 1 4  of figure 2 give contributions 
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In these equations the quantities Ti (q )  are 

4 

(2.12) 

(2.13) 

Figure 2 .  Diagrams contributing to Y 

The result of performing the frequency summations is 

4 E : )  - rl(q) = 

4((Yl - E ; ) n ( E : )  - (Y1 - E ; ) n ( E ; ) )  

J2(q)  (E; - E;) 
r2(4)  = ~ 

r3(4) = - - - - L ~ ~ _ ~ ~  -4 j (y2  - 6-1 n(--~4+) - ( y 2  - E : )  n ( - ~ ; ) )  

(E:  - E ; )  

- _ _ . _ _ _ _ _ p ~  

(2.14) 

The derivatives of equation (2.11) with respect to h, will involve derivatives of Ti(q) .  
J2(d (6: - 6 ; )  

From equation (2.14) these are 

ar3 Y ’ ( E  1 Y 4 E 4 )  Y 
+T ah 1 ah,  2 4  2 4  4e4 

ar 1 - -  Yp=-L-p 

ar, 2(y2 + e; )  ~ ( E J  ~ ( E J  1 + -. - 
~ - _ _ _ _ ~  - ~ 

ah 1 J 2 ( 4 )  6; 2 4  44 
where n’(x) denotes the derivative of n(x)  with respect to x. Using these results it follows 
from equation (2.1 1) that the sublattice magnetization is after much simplification 
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+ K3n(c,) - SK,n(e,,) + K,e,n’(~,) - +K31 (2.15) 
where 

The terms proportional to n(eq) n(Eq.) and n’(Eq) n(Eq,) describe interactions between two 
spin waves, and there is a zero point magnetization given by -(1/16N2) X4,4g K 3 / ~ : ~ 4 . .  The 
remaining terms give temperature dependent contributions corresponding to single spin 
wave processes. The general result of equation (2.15) is now considered in several special 
cases. 

If the coupling is only between nearest neighbour sites and the lattice has a centre of 
symmetry, the results may be simplified by the use of equation (3.15) of 11. Applying this to 
the isotropic case (a = h = 0), equation (2.15) becomes 

(2.17) 

Using momentum summations evaluated in I, equations (C.4) and (CS),  this result becomes 

AR = -~ - 192 P2W) R4) T 6  + 4($) ~~ P W )  {‘E ($40; - 6 . q  T 2 .  (2.18) 

The contribution to the zero point magnetization in this approximation is zero, and the 
linear spin wave term of order (ljz)’ is proportional to T2.  The term proportional to T6 is 
the spin wave interaction term, first treated by Oguchi (1960), which corresponds to 
Dyson’s leading Bom approximation (1956) for the spin wave interaction effects for the 
Heisenberg ferromagnet. 

If the nearest neighbour assumption is not made, the spin wave interaction terms still 
give a term in AR proportional to T6. This follows from equation (2.15), using the methods 
of I, Appendix C,  since the momentum summations are dominated by small q and 4‘ in 
the isotropic case, for which K ,  and K ,  are both of order (44’)’. There will also be higher 
order terms proportional to T8 .  The zero point term is now no longer vanishing but it is 
expected to be small. The single spin wave terms give contributions proportional to T 2  
or T4 in leading order. 

The anisotropic cases are included in the general result of equation (2.15). For equal and 
opposite anisotropy fields h it is again possible to perform the momentum summations to 
obtain an expansion for small h provided h < J(0)  and hJ(0) < T2,  as was carried out for 
the order (l/z)l terms in I, subsection (3.2). The divergence in (8lah)A.R as h .+ 0 still occurs 
in this order. Anisotropy in the exchange is no longer equivalent to an additional field 

It is possible to include exchange coupling between sites on the same sublattice as 
described in I, subsection (3.2). Also the generalization of the ( 1 ; ~ ) ~  results to higher 
temperatures is a relatively simple matter in principle, but the calculations are rather 
lengthy . 

The method of I, appendix A, allows a direct check to be made of the order in the (l/z) 
expansion and the absolute size of the low temperature magnetization result (2.15). In this 

P3J6(0) p ~ 2 ( 0 )  N 4 

h‘ = 1 ,aJ(O) as it was in order (l/z)l. 
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equation each momentum summation has a range of order qo or less so that the contribu- 
tion to AR is indeed proportional to ( 1 / ~ ) ~ .  Its ratio to the leading order result R, is (l/z)’ 
apart from a constant of order unity, and the result from (2.15) is therefore much smaller 
than the previous terms in the high density expansion for the magnetization provided the 
low temperature validity criterion ljz 4 1 of I, subsection (3.4), is satisfied. 

2.2. The free energy in order (l/z)’ 
In this subsection the (l/z)’ terms in the low temperature free energy are determined. 

It is first shown that these terms in the free energy correspond to the diagrams of figure 2 
for Y so that equation (2.11) is equivalent to the usual relation between magnetization and 
free energy, and the determination in the previous subsection of Y amounts to a determina- 
tion of the free energy terms within the same approximations. 

The calculation of the free energy uses the generalization given in I, appendix D, of the 
selfconsistent formalism developed by Luttinger and Ward (1960). The method of separating 
the ( 1 / ~ ) ~  terms is analogous to that of I, subsection (4.2) for order (l/z)’. Terms up to and 
including ( 1 / ~ ) ~  will be selfconsistently included, and all higher order terms will be neglected. 
The self-energy parts are expanded as in I, equation (4.5), and hence neglecting terms of 
order ( 1 1 ~ ) ~  the expansions of the Green functions become 

C,(k,  a) = C;(k, a) + C;(k, x )  {Xi’) (k ,  a) + X p  (k ,  a)} C;(k, a) 

+ C;(k, a) Cl’) (k ,  a) C;(k, a)  X[’)(k, a)  C;(k, a) (2.19) 

with an analogous result for D,(k, x).  The ( 1 ; ~ ) ~  contribution to the free energy is obtained 
by submitting these expansions of the self energies and Green functions into I ,  (4.1) and 
selecting the ( 1 , ’ ~ ) ~  terms 

This will be evaluated only in the low temperature approximation where e-’’T factors 
are neglected, and thus all terms in equation (2.20) involving a Xio) (k ,  a) factor may be 
omitted. The corresponding skeleton self energy parts and contributions to Yare illustrated 
in figure 3, where all internal lines are selfconsistently renormalized. From these diagrams 
the quantities XI1) (k ,  a), Ai’) (k,  a) and Y ( 2 )  may readily be derived and substituted into 
equation (2.20). After much simplification the result is that @) is given by the sum of the 
four diagrams of figure 2, with the appropriate symmetry numbers. These contributions 
have already been calculated and are expressed in equations (2.12) and (2.14). Thus in the 
symmetrical case the result for F(2) may be written as 

(2.21) 

where 

K ,  = 4(1 + a)y2J(O)  + (1 + o ) J ( q ) J ( q ‘ ) J ( q  - 4’) - 2yJ2(q) - 2yJ2(q ’ )  

K 6  = 2yJ2(q) - + 0) J(q)  J(q’) J ( q  - q’) - i2(l + 0, yJ(0) - J2(q’)}  (Y - € 4 )  

K7 = 3 1  + 0) J ( q  - q’) J (q )  J(q’) - J2(q’) (Y - Eq‘) + (1 + 4 J(0)  (Y - Eq) (Y - Eli’). 

The terms proportional to n ( E q )  n(E,.) and n(c,.) describe the two spin wave processes and 
single spin wave processes respectively, and there is a zero point energy given by 
- (1/4N2) Cq,q,(K7/~4~qr). The general result of equation (2.21) is now considered in several 
special cases. 
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I I 

Figure 3. (1 z)‘ calculation of 9 at low temperatures 

In the approximation of nearest neighbour coupling only. TI. equation (3.15) may be 
used and for the isotropic case the result simplilies to 

(2.22) 

This is equivalent to the expression obtained by Oguchi (1960) from spin wave theory. 
Using I, (C.5) for the momentum summations, the temperature dependent part of (2.22) 
becomes 

Hence the interaction term is proportional to T8.  while the single spin wave term has a 
T4 dependence. If the assumption of nearest neighbour coupling is not made the spin 
wave interaction term in the isotropic case is, from (2.21) 

1 
- 4 ~ 2  z, {J3 (0 )  + J ( q )  J ( q ’ )  J ( q  - q’) - J ( 0 )  J 2 ( q )  - J ( 0 )  J2(q ’ ) }  %‘d. (2.24) 

Eq%‘ 

The momentum summations are dominated by the behaviour at small q and q’ for which 
the factor 

J3(0)  + J ( q )  J(q’)  J(q  - 4’) - J(0)  J2(d - J(0) J2(4’)  
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is of order This results in a leading temperature dependence again proportional to 
T8.  It may also be shown that the term proportional to n(qJ in (2.21) still has a leading 
temperature dependence proportional to T4 in the isotropic case. The zero point energy 
has an additional term 

----E J(q)J(q’ )  ( J ( q  - q’)J(O) - J ( q ) J ( q ’ ) } .  
16N2 q q ,  J ( 0 )  

(2.25) 

The anisotropic cases are included in the general result of equation (2.21) 
The ( l / ~ ) ~  term in the internal energy at low temperatures is obtained by substituting 

equation (2.21) into the Gibbs-Helmholtz relation. For example in the isotropic case with 
nearest neighbour coupling only, this becomes 

(2.26) 

Equation (2.26) is equivalent to the spin wave result of Oguchi (1960). 
In analyzing the free energy result (2.21) the same cases have been considered as for the 

(1 :~)~  magnetization (2.15). The same methods as were used in the discussion of the 
magnetization have been applicable, essentially because of the relation (2.1 1). We may 
likewise confirm, by the use of the momentum summation method of I, appendix A, that 
the contribution (2.21) to the free energy is of order ( 1 1 ~ ) ~  times the leading contribution 
to the low temperature free energy, that given by the molecular field approximation of I, 
subsection (4.1). 

3. The damping rk at low temperatures 
In the leading order in the high density expansion, given by I1 (2.17) the transverse 

Green function has real poles at all temperatures, therefore no damping. In the next order, 
there is damping, given by I1 (3.25) but this vanishes at low temperatures where terms of 
order e- ‘ I r  are neglected. The leading terms for the low temperature damping rk come 
from the next higher order and will now be calculated. 

The self energy diagrams for calculating rk from equation I1 (3.10) are shown in figure 4, 

Figure 4. Self energy diagrams for calculating rk at low temperatures. 

in terms of effective spin wave vertices. They represent spin wave scattering effects analogous 
to those included in the derivation of the low temperature spin wave damping for the 
ferromagnet by Tahir-Kheli and ter Haar (1962), and Lewis and Stinchcombe (1967). 
Each diagram contains two independent momentum labels which are eventually summed 
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over. The result for Xi]{&, q) which links sublattices i a n d j  may be written as 

(3.1) 

where p ,  denotes the momentum 4-vector (q,., iq,.) and p = (k, iq). In equation (3.1), Vdenotes 
a modified vertex part resulting from absorbing the energy denominators (7 i iq) of the 
vertex function defined in figure 4 into the spin wave chains to give a modified transverse 
interation Jim. These quantities may be expressed as 

K l l l z L 3 ( ~ ,  p l ,  p 2 ,  p 3 )  = 2( - 1)' (27, - i r  - iqz) 6,,112,3 
+ J(k  - 41) 4 I l l 2 i 3  + J(k - 43) 411,2,3 (3.2) 

In equation (3.2) the notation diiliZi3 = 6ii16ii26ii3, etc., has been used. If equation (3.3) is 
substituted into equation (3.1) there will be several different types of terms resulting from 
the product of the J i j p ) .  For example, the term proportional to TT,,,TT,,,T~,, may be 
simplified to 

Advantage has been taken of the diagonal nature of the matrix T* to reduce the number 
of summation variables in equation (3.4) to six. Equation (3.4) may be evaluated by re- 
placing the delta function on frequencies by an integral representation 
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and V1) is now a function of the momenta only given by 

v!;l\zi3(k> 41, 42, 4 3 )  = 2(Ek +(- l ) k E q i  - 2;') (Q, ' ) I f ,  (Qi2'Li2 (Qi3'),i, 
+ J(k  - 41) (Q;ll)ill (Q&')i/2 (Q;3')i/3 

+ J (k  - 43) ( Q i l l ) i / l  (Q421)1/2 (Q431)1/3.  (3.7) 
The result of equation (3.6) may be substituted into 11, equation (3.10) to give a contribution 
to r k .  The contributions from the other terms in Clip) obtained by substituting equation 
(3.3) into (3.1) may be evaluated by an analogous procedure. The results are similar to 
equation (3.6) but with one or more of the eq replaced by y. 

The temperature dependence of the result for r k  arising from (3.6) and similar equations 
comes from the I Z ( E ~ )  factors. When a summation over q is carried out, this gives rise to a 
temperature dependence proportional to a power of T in the isotropic case (as in I, 
appendix C). This will replace the exponential e-1iT type of behaviour obtained in 11, 
subsection (3.3) from the lowest order calculation. There will also be terms in the self-energy 
which have no I Z ( E ~ )  factors, and so there is a possibility of obtaining a zero point contri- 
bution to r k .  It may be shown that the only zero point contribution to the imaginary part 
of the analytically contained self energy is 

(3.8) 
All other terms are such that the delta functions cannot be satisfied. The delta functions in 
equation (3.8) impose a heavy restriction on the functional form of e4 for there to be a non- 
zero result. If E, is assumed to be a monotone increasing function of q, it may be proved 
that a necessary condition for a nonzero contribution is that cq is a concave function of q 

E,, + E q 2  E' i1+42 (3.9) 
for any q1 and q2. This condition is not normally satisfied if there is any anisotropy, or 
even in the isotropic case for general q. It may, however, be satisfied in the isotropic case 
for very small q where eq becomes proportional to q. For a strictly linear spectrum the 
zero point damping from equation (3.8) is 

(3.10) 

The requirements for this result are not likely to be satisfied for most physical cases. The 
leading temperature-dependent terms are of the form 

They contain only one n(Eg) type of factor. The g1 summation will be dominated by the 
behaviour at snall q l ,  and su each term of this type will be proportional to T 2  in the isotropic 
case. 

4. Conclusions 
Calculations have been presented for the sublattice magnetization and free energy in 

order ( 1 / ~ ) ~  and the spin wave damping at low temperatures where terms proportional to 
e- are neglected. Within this approximation the lowest order nonvanishing contribution 
to the damping is obtained. At higher temperatures an approximate description of the 
damping is obtained from lower order terms in the (l/z) expansion as described in paper 11. 
The calculations for the thermodynamic quantities represent an extension of the results in 
paper I and are equivalent to including the effects of spin wave interactions. The generali- 
zation of the results to higher temperatures may be carried out by a similar procedure. 
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Note added in proof: Following Harris et al. (1970) we have shown (Cottam and Stinchcombe 
19704 that the symmetry of the various T 2  terms is such that they mutually cancel for small 
k, leaving a leading contribution to the low temperature damping proportional to c k T S  
for (T/7;,) 6 ( E k / J ( o ) )  6 1. 
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