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ABSTRACT

We present MHD simulations exploring the launching, acceleration, and collimation of jets and disk winds. The
evolution of the disk structure is consistently taken into account. Extending our earlier studies, we now consider the
self-generation of the magnetic field by an α2Ω mean-field dynamo. The disk magnetization remains on a rather
low level, which helps to evolve the simulations for T > 10,000 dynamical time steps on a domain extending
1500 inner disk radii. We find the magnetic field of the inner disk to be similar to the commonly found open field
structure, favoring magneto-centrifugal launching. The outer disk field is highly inclined and predominantly radial.
Here, differential rotation induces a strong toroidal component, which plays a key role in outflow launching. These
outflows from the outer disk are slower, denser, and less collimated. If the dynamo action is not quenched, magnetic
flux is continuously generated, diffuses outward through the disk, and fills the entire disk. We have invented a toy
model triggering a time-dependent mean-field dynamo. The duty cycles of this dynamo lead to episodic ejections on
similar timescales. When the dynamo is suppressed as the magnetization falls below a critical value, the generation
of the outflows and also accretion is inhibited. The general result is that we can steer episodic ejection and large-scale
jet knots by a disk-intrinsic dynamo that is time-dependent and regenerates the jet-launching magnetic field.
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1. INTRODUCTION

Astrophysical jets as highly collimated beams of high-
velocity material and outflows with a small degree of collimation
and lower speed are a ubiquitous phenomena in astrophysical
sources of rather different ranges in energy output and physical
extension. Previous calculations have shown that jets and winds
could be produced by the interplay of large-scale magnetic fields
with the accretion disk (Blandford & Payne 1982; Pelletier &
Pudritz 1992; Ferreira 1997).

Two main mechanisms compete in the acceleration of the ma-
terial that is lifted from the disk into the outflow. In addition to
the classical magneto-centrifugal acceleration mechanism pro-
posed by Blandford & Payne (1982), which is usually com-
pared to a sling-shot mechanism of material along poloidally
dominated magnetic field lines, acceleration may also be driven
by a pressure gradient of the toroidal magnetic field, compa-
rable to a mechanical spring mechanism. This mechanism has
been studied extensively both analytically (Lynden-Bell & Boily
1994; Lovelace et al. 1995; Lynden-Bell 1996) and numerically
(Ustyugova et al. 1995). If the toroidal magnetic field is gener-
ated continuously, inflation of the poloidal field structure results
and the material enclosed by the poloidal magnetic loops is ac-
celerated in the vertical direction. This kind of jet structure is
known as a tower jet, or a Poynting-dominated jet.

The jet launching and collimation problem1 is usually ad-
dressed numerically by applying a large-scale initial poloidal

1 In this paper we apply the following notation. Jet launching is the process
that lifts accreting material out of the disk and couples it to a disk wind
(accretion–ejection structure). Jet formation is what we call the acceleration
and collimation of that slow disk wind from the disk surface to a high velocity
of super-escape speed, super-Alfénic speed, and possibly super-magnetosonic
speed

magnetic field. This holds in particular for simulations con-
sidering the acceleration and collimation processes only and
assuming the underlying disk as a boundary condition (Ustyu-
gova et al. 1995; Ouyed & Pudritz 1997; Krasnopolsky et al.
1999; Fendt & Čemeljić 2002; Fendt 2006, 2009; Pudritz et al.
2006; Vaidya et al. 2009; Porth & Fendt 2010).

Also, simulations treating the launching mechanism, i.e.,
simulations of the accretion–ejection structure that include the
time evolution of the disk dynamics, have so far assumed a
global large-scale magnetic field as an initial condition (Shibata
& Uchida 1985; Casse & Keppens 2002, 2004; Meliani et al.
2006; Zanni et al. 2007; Tzeferacos et al. 2009; Murphy et al.
2010; Sheikhnezami et al. 2012; Fendt & Sheikhnezami 2013).

These studies have provided deep insight into the launching
mechanism, i.e., the connection between the outflow and the
underlying disk. It is clear today that the magnetic field plays a
crucial role in lifting the matter out of the disk and accelerating
it to high velocity. By knowing the disk magnetization, one
can infer many details of the launched outflow, namely, its
energetics and the ejection efficiency (see Zanni et al. 2007;
Sheikhnezami et al. 2012; Stepanovs & Fendt 2014, hereafter
Paper I).

It is still an open issue what the exact structure and the strength
of the magnetic field in the disk are, and where its origin is. Be-
sides a central stellar magnetic field or advection of magnetic
field from the ambient medium, a turbulent dynamo can be a
major source of the disk magnetic field (Pudritz 1981a, 1981b;
Brandenburg et al. 1995). In studying the disk dynamo in the
context of outflow launching, only a few numerical experiments
have been performed in which the magnetic field was gener-
ated ab initio (Bardou et al. 2001; von Rekowski et al. 2003;
von Rekowski & Brandenburg 2004). These authors were first
to show how accretion disks start producing the outflow if the

1

http://dx.doi.org/10.1088/0004-637X/796/1/29
mailto:deniss@stepanovs.org
mailto:fendt@mpia.de


The Astrophysical Journal, 796:29 (14pp), 2014 November 20 Stepanovs, Fendt, & Sheikhnezami

magnetic field is amplified by the dynamo to about its equipar-
tition value.

A further motivation for considering a disk dynamo for jet
launching is seemingly the time-dependent ejection of the jet
material. For protostellar jets the typical timescales for ejection
derived from the observed knot separation and jet velocity are in
the range of 10–100 yr. The typical timescale of the jet-launching
area is, however, about 10–20 days, which is the Keplerian
period close to the inner disk radius. A time-variable dynamo
may be responsible for changing the jet-launching conditions
on longer timescales. We may refer here to the dynamo cycle of
the solar magnetic field, which is longer than the Sun’s rotation
period.2

Our main concern in this paper is the structure and time
evolution of the dynamo-generated magnetic field, the launching
of outflows by such a disk self-generated magnetic field, and the
interrelation between the dynamo and the episodic ejection of
jets, possibly leading to the co-called jet knots. Such a study has
not yet been presented in the literature.

Disk dynamos were discussed in the literature on episodic
accretion and ejection events in dwarf novae, and also as
a possible physical process to generate MHD instabilities
and turbulence, allowing for angular momentum transfer and
accretion. Armitage et al. (1996) discussed a disk dynamo
mechanism in accretion disks as a cause for dwarf novae
eruption, similar to what could probably happen in jet-launching
disks. Tout & Pringle (1992) discuss a disk dynamo action
in order to physically produce the magnetic disk viscosity.
However, Gammie & Menou (1998) showed that for low
Reynolds numbers the MHD disk turbulence and angular
momentum transport dies out, possibly leading to episodic
accretion in dwarf novae.

Rozyczka et al. (1995) discuss a model of a disk dynamo
driven by magnetic buoyancy, which does not directly involve
a disk turbulence. This model was re-visited by Johansen
& Levin (2008), who find that accretion could in fact be
established by a Parker-instability-driven dynamo. According
to Johansen & Levin (2008) accretion could be based on the
interaction of Parker and magnetorotational instabilities (MRI).
In this scenario the vertical component of the magnetic field is
generated by Parker instability and serves as a source for MRI.

Applying a mean-field α2Ω dynamo (Krause & Rädler 1980)
we present the step-by-step evolution of the magnetic field.
In our approach turbulence is being addressed in the mean
field approach, and is not self-consistently generated (e.g., by
the MRI).

We also study episodic jet-launching scenarios by means of
a simple toy model in which we artificially switch the dynamo
action on/off. We discuss whether similar processes in which
the dynamo does change its strength may lead to episodic
jet ejection and the jet knots. We also discuss in detail how
the magnetic field can be regenerated by re-establishing the
dynamo action.

Our paper is organized as follows. In Section 2, we briefly
describe our numerical setup. For a more complete discussion
we refer to Paper I. In particular, we discuss the implementation
of the mean-field dynamo equations and the model approach
for the magnetic diffusivity and the dynamo-α. In Section 3,
we present our reference dynamo simulation where the jet-
launching magnetic field structure is dynamo-generated from a

2 By coincidence, the difference in the respective timescales—a magnetic
cycle of 22 yr and a rotational period of 35 days—is comparable to those of
protostellar jets.

weak seed field. We discuss the difference between dynamo and
non-dynamo simulations. In Section 4, we present simulations
during which the disk dynamo is switched on and off repeatedly,
leading to episodic ejection of the disk material into the
collimated outflow. We summarize our paper in Section 5.

2. MODEL APPROACH

For our numerical simulations, we apply the MHD code
PLUTO3 (Mignone et al. 2007), solving the time-dependent,
resistive MHD equations on a spherical grid. Our simulations
have been performed in two-dimensional axisymmetry, apply-
ing spherical coordinates (R, θ ). We refer to (r, z) as cylindrical
coordinates.

We have specified the equations considered in detail in
Paper I. Here we stress in particular the induction equation
that we have modified in the code according to the mean-field
dynamo formalism (Krause & Rädler 1980),

∂ B
∂t

= ∇ × (V × B + αdyn B − η J), (1)

where the tensor αdyn describes the α-effect of the mean-field
dynamo, and the tensor η the magnetic diffusivity (see below).

As no physical scales are introduced in the equations we solve,
the results of simulations are presented in non-dimensional
units. Lengths are given in units of R0, corresponding to
the inner disk radius. Velocities are given in units of VK,0,
corresponding to the Keplerian speed at R0. Thus, times are
given in T0 ≡ R0/VK,0 units. Note that 2πT 0 corresponds to
one rotation at the innermost orbit. Densities are given in units of
ρ0, corresponding to R0. Pressure is measured in P0 = ε2ρ0V

2
0 ,

where ε is the ratio of the initial isothermal sound speed to
Keplerian speed taken at the disk midplane. All our simulations
were performed with ε = 0.1.

We normalize all variables, namely, R, ρ, V, and B, to their
values at the inner disk radius R0. We thus may apply our
scale-free simulations to a variety of jet sources. For the typical
astrophysical scaling of the code units we refer to Table 1 of
Paper I.

We apply a numerical grid with equidistant spacing in the
θ -direction, but stretched cell sizes in the radial direction,
considering ΔR = RΔθ . Our computational domain of size
R = [1, 1500R0], θ = [0, π/2] is discretized with (NR × Nθ )
grid cells. We use a general resolution of Nθ = 128. In order to
cover a factor 1500 in radius, we apply NR = 600. This gives
a resolution of 16 cells per disk height (2ε) in the general case.
We have also performed a resolution study with 1.5 times higher
(lower) resolution, thus using 900×192 (450×64) cells for the
domain, or 26 (11) cells per disk height.

2.1. Initial Conditions

As a measure for the magnetic field strength, we use the
magnetization defined as the ratio between magnetic and thermal
pressure,

μ = B2

2P
. (2)

We have used different prescriptions for the magnetization;
however, in all cases the local magnetic field pressure B2/2
is related to the gas pressure P at the midplane.

3 Version 4.0, released 2013.
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Table 1
Inner and Outer Boundary Conditions

ρ P VR Vθ Vφ BR Bθ Bφ

Inner disk ∼ r−3/2 ∼ r−5/2 ∼ r−1/2,� 0 0 ∼ r−1/2 Slope Slope ∼ r−1

Inner corona ∼ r−3/2 ∼ r−5/2 0.2 cos (ϕ) 0.2 sin (ϕ) ∼ r−1/2 0 div B =0 0
Outer disk ∼ r−3/2 ∼ r−5/2 Outflow, � 0 Outflow Outflow div B = 0 Outflow ∼ r−1

Outer corona ∼ r−3/2 ∼ r−5/2 Outflow, � 0 Outflow Outflow div B =0 Outflow ∼ r−1

Axis Sym Sym Sym Anti-sym Anti-sym Sym Anti-sym Anti-sym
Equator Sym Sym Sym Anti-sym Sym Anti-sym Sym Anti-sym

Notes. Outflow is the zero gradient condition and the constant slope conditions are marked by “slope” in the table. Symmetric and anti-symmetric
boundary conditions are marked by Sym and Anti-sym, respectively.

All dynamo simulations we perform start from a very weak
initial magnetization μinit = 10−5. Therefore, the initial struc-
ture of the accretion disk can be obtained as the solution to the
steady-state force equilibrium equation, neglecting the contri-
bution by the Lorentz force,

∇P + ρ∇Φg − 1

R
ρV 2

φ (eR sin θ + eθ cos θ ) = 0. (3)

Assuming a self-similar disk structure this equation can be
solved analytically.

All our simulations are initialized with a purely radial
magnetic field, confined within the disk and defined via the
vector potential B = ∇ × Aeφ , and

A = Bp,0r
−1e−8z/H 2

. (4)

The parameter Bp,0 = ε
√

2μinit denotes the strength of the initial
magnetic field, while ε = 0.1 is the ratio of isothermal sound4 to
Keplerian speed. Although this magnetic field distribution may
be considered as somewhat artificial, we found that it provides
a smooth evolution during the initial phase. We have also
performed simulations starting from a purely toroidal magnetic
field as the initial condition, leading to very similar results.

In contrast, a purely vertical magnetic field would generate
strong currents at the disk surface region because of the strong
initial shear between the rotating disk and the non-rotating
corona. This would greatly impact the initial evolution of the
accretion–ejection structure. As long as the initial magnetization
μinit is low, it does not play a substantial role in the initial disk
evolution. This is the result of the exponential evolution of the
magnetic field amplification by the dynamo.

2.2. Boundary Conditions

The boundary conditions are adapted from Paper I. The only
change made was for the coronal region of the inner boundary.
Here, we do not allow any magnetic flux to penetrate the inner
coronal region and not only set Bφ = 0, but also BR = 0. Since
the magnetic field vanishes in that area, we therefore prescribe a
purely radial profile of the inflow into the corona (in contrast to
an inflow aligned to the magnetic field considered previously),
keeping the same inflow velocity VR = 0.2. We summarize all
boundary conditions in Table 1.

Since the magnetic field is suppressed in the inner coronal
region, the shear in the area between the coronal region and the
disk boundary can develop strong electric currents. This makes
the region between the axis and the jet subject to small-scale
perturbations, especially in the runs with high resolution. On
the other hand, the jet-launching area of the inner disk always
shows a smooth, stable, and non-fluctuating evolution.

4 Note, however, that we use the adiabatic equation of state.

2.3. Magnetic Diffusivity

In Paper I, we studied in detail models with both a standard
diffusivity and a so-called strong diffusivity. We have shown
numerically that the standard diffusivity model is prone to the
accretion instability. In the present paper, studying the dynamo
action, we also performed simulations using both models. These
models qualitatively share many similar features. Therefore, we
will present simulations applying the strong diffusivity model,
but commenting on differences between diffusivity models.

The main mediator in the magnetic diffusivity models is the
magnetization of the underlying disk. In case of simulations
with a substantially strong initial magnetic field (see Paper I),
the disk magnetization is set by the magnetic field at the disk
midplane.

Since in the dynamo simulations presented here the initial
magnetic field does not intersect with the midplane,5 and may
also remain low for quite some time, the parameterization of the
diffusivity model with the magnetization had to be revised. We
keep the same notation as in Paper I for the strong diffusivity
model,

αssm = αm

√
2μ0

(
μD

μ0

)2

, (5)

where the disk magnetization,

μD = 〈BD〉2

2P
, (6)

is defined by means of the average total magnetic field 〈BD〉
for a certain radius within the disk (up to H), normalized to
the midplane pressure. A non-zero magnetic diffusivity allows
for reconnection and diffusion of the magnetic field across
the midplane. An assumption that the magnetic diffusivity is
dependent on the total magnetic field strength is consistent with
the fact that the MRI is excited by both toroidal and poloidal
magnetic field components (Fromang 2013).

2.4. The Dynamo Model

We apply a standard mean-field α2Ω dynamo formalism
(Krause & Rädler 1980), where α represents the dynamo
effect by turbulence and Ω stands for the differential rotation
of the plasma. According to the mean-field dynamo theory,
an extra electromotive force term αdyn B enters the induction
equation (Equation (1)) and is responsible for the generation
of the magnetic field. In general, αdyn is a tensor; however,
non-diagonal components are less relevant for the dynamo
process (Brandenburg & Donner 1997; Bardou et al. 2001),

5 The initial field is purely radial or toroidal.
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Figure 1. Time evolution of the disk–jet structure of the reference dynamo simulation. Only a small cylindrical part of the whole spherical domain is presented. Shown
is the density (colors, in logarithmic scale); the poloidal magnetic field lines (thin black lines); the disk surface as defined by VR = 0 (thick black line); and the sonic
(red line), the Alfvén (white line), and the fast magnetosonic (white dashed line) surfaces.

(A color version of this figure is available in the online journal.)

in particular when a moderately strong magnetic field is present
(Brandenburg et al. 2012). Therefore, we neglect all non-
diagonal components and set the diagonal values equal to
one parameter, αdyn. The sign of αdyn as well as its number
value in real disks has been widely debated (Brandenburg &
Campbell 1997; Rekowski et al. 2000; Arlt & Rüdiger 2001).
It has been shown that in order to get a dipolar structure of the
mean magnetic field (as opposed to a quadrupolar structure), a
negative alpha should be chosen (Brandenburg & von Rekowski
2007; Bardou et al. 2001).

Following a dimensional analysis, we may scale αdyn as the
Keplerian velocity, thus applying

αdyn = αD r−1/2Fα(z), (7)

where the vertical profile of α-effect is defined by

Fα(z) =
{

sin
(
π

z

H

)
z � H

0 z > H.

Here, H denotes the disk scale height and is approximated to be
constant in time. The profile Fα(z) restricts the α-effect to the
disk area.

It is generally believed that in the case of a strong magnetic
field, the dynamo is quenched (Brandenburg & Subramanian
2005). The main reason is that a strong global magnetic field
suppresses the turbulence, and thus the turbulent dynamo. The
quenching is commonly applied by multiplying the αdyn-term
by a quenching function,

Q = 1

1 + 2μx
, (8)

where μx, in contrast to μD, is the local magnetization. In order
to be consistent with and directly affect the resulting magnetic
field, we parameterize μx = qμμD. By setting different qμ we
can limit the magnetic field growth to a certain value. Typically,
we choose a rather high qμ in order to quench the dynamo
already for low magnetizations.

However, there is another possibility of limiting the magnetic
field strength. We find that μ0 in the strong diffusivity model
(Equation (5)) is in fact a good measure for the resulting actual
disk magnetization. This comes from the functional form of the
diffusivity profile—any further growth of the disk magnetization
has a strong feedback of the diffusivity (see Paper I).

Both direct dynamo quenching and indirectly limiting the
magnetization by applying the strong diffusivity model lead to
the saturation of the magnetic field. The difference between
these approaches is that in the case of leaving the dynamo
working in the disk, the magnetic flux is continuously generated
and the disk is filled with the magnetic field. If the standard
diffusivity model is applied, then dynamo quenching is the
only mechanism to stop further magnetic field amplification.
Therefore, since we apply the strong diffusivity model in
the simulations we present, these simulations are run without
dynamo quenching.

The expected dynamo number for accretion disks is given by

|D| = |CαCω| � 3

2
αssm

−2 (9)

(von Rekowski et al. 2003), where Cα = (α0H/η0) and Cω =
(|ΔΩ|H 2/η0) represent the strength of the α-effect and shear
dΩ/dr , respectively. Since our main concern is the resulting
jet-launching magnetic field, we choose the maximum dynamo
number in order to generate the magnetic field structure as
rapidly as possible. The maximum dynamo number is provided
by αD = −0.1. Note that the dynamo number D is strongly
dependent on αssm.

3. A REFERENCE DYNAMO SIMULATION

In this section, we discuss simulations applying the dynamo
model and the resulting configuration of the disk–jet system.

We will refer to our reference dynamo simulation as the
simulation with the parameters αD = −0.1, αm = 1.65, and
μ0 = 0.01. Figure 1 shows the time evolution of our reference
dynamo simulation, which can be seen as typical for our model
setup. The simulation starts from a weak (μseed = 10−5),
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purely radial magnetic field, confined within the disk. Once the
simulation is started, the toroidal component of the magnetic
field is being continuously generated from the radial magnetic
field simply by stretching. For the poloidal magnetic field
component, the only generation mechanism is the dynamo effect
that induces the poloidal component from the toroidal one.

Since the toroidal magnetic field is antisymmetric to the
equator, the poloidal magnetic field loops that are generated
by the dynamo first do not cross the equator. When they evolve
over time, magnetic reconnection is enforced by the equatorial
plane boundary condition and the magnetic diffusivity in the
disk. As a consequence the magnetic loops (in the upper and
lower hemisphere) merge and do traverse the equatorial plane.
Since our diffusivity model depends on the average magnetic
field in the disk there is always a substantial diffusivity present
in the disk.

As described by Johansen & Levin (2008), the toroidal
component of the magnetic field is continuously amplified until
it reaches the buoyancy limit and starts moving upward, away
from the disk. The upward motion changes the structure of
the magnetic field lines from a predominantly radial one into
a vertical direction. When the magnetic field is sufficiently
inclined, magneto-centrifugal launching (Blandford & Payne
1982) can strongly accelerate the plasma on these field lines.
The outflowing gas carries with it the toroidal magnetic field
generated in the disk, thus setting a limit for the toroidal
magnetic field strength in the disk (see Paper I).

All dynamo simulations evolve into three distinct domains
in the accretion–ejection structure. Starting from the innermost
disk, in the first region the magnetic field has the typical structure
of field lines inclined with respect to the disk surface. Although
magnetic field generation by the dynamo can still take place (if
the α-effect is not quenched), the magnetization in that region
has become sufficiently high in order to operate the standard
magneto-centrifugal jet driving. The second region is where
the poloidal magnetic field is mostly radial. Here the velocity
shear in the disk creates a strong toroidal component of the
magnetic field. In this area, the outflow is launched mainly by
the buoyancy of the toroidal magnetic field.

The third region is the outer disk, where the magnetic field
is rather weak, with somewhat irregular structure. Here, the
magnetic flux has originated from the same magnetic loops as
the innermost field, but because of the longer distance from the
inner disk, the magnetic field strength has become much lower.
Note that the magnetic field in the outer disk has the opposite
polarity.

In summary, the overall structure of the magnetic field has
a strong gradient that leads to strong outward diffusion of
magnetic flux. Due to this diffusion, the whole disk is filled
by a non-zero net magnetic field (BP|midplane 	= 0).

3.1. Dynamo Effect versus Magnetic Diffusion

As discussed in detail in Paper I, the evolution of the disk–jet
system is mainly set by two opposite processes, the diffusion and
advection of the magnetic field. It is more complicated to reach
this balance. In the case of dynamo simulations, a third process
contributes to the induction equation, the dynamo, and it is more
complex to reach an equilibrium situation. Nevertheless, the
main effects of these processes can be disentangled. The dynamo
term in the induction equation manifests itself by generating
loops of the poloidal magnetic field. Because of magnetic flux
conservation along the magnetic loops, the magnetization in the
inner disk (inner footpoint of the loop) is always higher than in

Figure 2. Snapshot at T = 1000 of physically different regions of the disk–jet
structure. Shown is the mass density (in logarithmic scale) and stream lines of
the poloidal velocity (black lines with arrows). The red line marks the magnetic
field line that is rooted at the innermost disk area along the midplane. The upper
white dashed line separates the area where Vp||Bp from the rest of the disk. The
accretion and ejection areas are separated by a white line indicating Vr = 0 and
a black line indicating Fφ = 0. The lower white dashed line separates the actual
accretion area where Vr 
 Vθ from the rest of the disk.

(A color version of this figure is available in the online journal.)

the outer disk (outer footpoint of the loop). Therefore, a strong
gradient in the magnetic field develops, which evolves primarily
following the magnetic diffusivity model.

By smoothing out the gradient of the magnetic field, the
diffusivity plays a key role in the overall evolution of the
magnetic field—first, it diffuses the magnetic field outward,
thus filling the outer disk with the magnetic flux, and second,
at the same time, the diffusivity destroys some flux within the
magnetic loop by reconnection.

In general, if the dynamo is not sufficiently strong (in case
of low dynamo numbers), the generated magnetic field will
quickly decay (being diffused) and the magnetization necessary
for jet-launching will not be reached.

3.2. Structure of the Tower Jet

Figure 2 shows the snapshot of the initial evolution at
T = 1000.

What can be immediately seen is that the disk structure,
namely, the structure of the velocity field and the magnetic field
(see Figure 1), is completely different from the non-dynamo
simulations (Stepanovs & Fendt 2014a, 2014b). We find two
distinct regions in which the poloidal component of the magnetic
field is inclined slightly (for r < 10) or strongly (for r > 10)
with respect to the disk surface. While the magnetic field of the
inner disk favors a standard magneto-centrifugal launching, in
this section, we concentrate mainly on the outer disk.

In this region, the strong toroidal magnetic field is induced by
the differential rotation of both the inclined poloidal magnetic
field and by the magnetic loops that are rooted at radially
different footpoints along the disk. The mechanism we observe
is similar to the well-known tower jet (Lynden-Bell & Boily
1994; Lovelace et al. 1995; Lynden-Bell 1996; Ustyugova et al.
1995). The increasing toroidal magnetic field pressure leads to
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Figure 3. Structure of the simulation at T = 1800. Shown by the color: logarithm of toroidal to poloidal magnetic field ratio (upper plot) and the jet poloidal speed
(lower plot). The black lines show the magnetic field. The white line represents the sonic surface.

(A color version of this figure is available in the online journal.)

an inflation of the poloidal magnetic loops and the material
enclosed by that poloidal loops is accelerated in the vertical
direction. This structure—typical for a tower jet—is clearly seen
in the extended loops in Figure 3. In Figure 3, we further see
that the fast jet, the one that is launched from the inner region of
the disk, becomes collimated already close to the disk. On the
contrary, for the tower jet—the expanding loop structures—it
takes a while to collimate.

Almost everywhere in the jet region, the toroidal magnetic
field dominates the poloidal magnetic field. Numerical simu-
lations have shown that such structures, for example, naturally
result from the interaction between a stellar dipole magnetic field
penetrating the accretion disk (Hayashi et al. 1996; Ustyugova
et al. 2000; Fendt & Elstner 1999, 2000; Kato et al. 2004). Note,
however, that the magnetic loops presented in the disk are gen-
erated by the disk dynamo. The tower jet originates from the
magnetic loop structure, and as the simulation evolves, that mag-
netic loop structure, and thus the base of the “tower,” constantly
moves outward.

Around the magnetic loop structure (r ≈ 10), we find that it
is the buoyancy force of the toroidal magnetic field that is the
main force responsible for the lifting of the disk material into the
outflow. Starting from the disk surface, defined as a surface of
zero radial velocity (VR = 0), the matter is further accelerated
by the pressure gradient of the toroidal magnetic field. The latter
is, in fact, consistent with the simulations by Ustyugova et al.
(1995). The early evolution of the disk–jet system (Figures 3
and 1 at T = 200) clearly shows the similarity to the magnetic
towers.

We typically find that the launching region, which was defined
in Paper I as the region where the velocity of the plasma changes
from being perpendicular to the magnetic field to almost parallel
to the magnetic field, is broader in dynamo simulations than in
the non-dynamo simulations. Also, the disk surface, where the
radial velocity changes sign by definition, is located at higher

altitudes, although the thermal disk scale height is still about
constant in time and about its initial value.

3.3. Outflow Launching: Accretion–Ejection

The magnetic field of the inner disk that is established in
the simulations is similar to the usual structure favoring the
magneto-centrifugal launching of the outflow. This type of jet
formation has been previously found and discussed by many
authors (Blandford & Payne 1982; Casse & Keppens 2004;
Pudritz et al. 2007; Zanni et al. 2007; Murphy et al. 2010) as
well as in our Paper I.

Therefore, in this section, we concentrate on the (outer) disk
region where the magnetic field has evolved into a structure
completely different from the previous simulations, namely, into
a structure with the poloidal magnetic field being predominantly
radial and a very strong toroidal component. In this part of the
disk, it is the toroidal magnetic field that plays the key role in
the launching (see Figure 4).

As the accretion–ejection process is governed by the magnetic
torques, these torques need to be discussed in detail. The white
line in Figure 4 marks the region where the magnetic torque
changes sign. The torque is negative in the inner disk (inside
the white line), where the angular momentum extraction from
disk to outflow takes place, and positive in the disk corona,
leading to the acceleration of the outflow material. In the region
dominated by the magnetic loops at radii of R � 15, we find
that the torque is purely positive, thus playing a major role in the
acceleration of the plasma. The blue line in Figure 4 separates
two regions, where (1) the magnetic forces accelerate the matter
in the direction of the outflow (Fθ > 0, above the line), and (2)
where the magnetic forces pinch the disk (below the line). In the
disk area below this line, the main force lifting the matter into
the outflow is the thermal pressure. The lines that mark the area
where the pressure force is equal to the Lorentz force projected
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Figure 4. Distribution of the magnetic field components at T = 1000. Shown is
the ratio of the toroidal to the poloidal magnetic field (colors, logarithmic scale);
the poloidal magnetic field lines (thin black lines); the sonic surface (red line);
and the locations where the Lorentz force components change sign, Fφ = 0
(white line) and Fθ = 0 (blue line). Further denoted are the locations where
(1) the gas pressure force is equal to the Lorentz force, both projected parallel
to the magnetic field (black dashed line), and (2) where the gas pressure force
is equal to the Lorentz force both projected parallel to the velocity field (green
line).

(A color version of this figure is available in the online journal.)

parallel to the magnetic field (black dashed line) and parallel to
the velocity field (green line) are also shifted closer toward the
disk midplane.

In the area above the loop-like structure, the toroidal magnetic
field dominates the poloidal field. In this region, acceleration
is mainly governed by the toroidal magnetic field pressure
gradient.

It is worth noting that such a configuration does not reach
steady state. This is already indicated by the misalignment
between the magnetic field lines and velocity field. Furthermore,
the blue lines in Figure 2 denote the launching area (see Paper I)
where the velocity field changes from a direction perpendicular
and parallel to magnetic field lines. The longer the simulation
evolves, the larger the area that reaches steady state. In other
words, the non-steady loop structure is moving outward along
the disk.

3.4. Dynamical Profiles of a Dynamo-disk Driving Jets

Here we discuss the overall disk structure of the reference
dynamo simulation. Figure 5 presents the radial profiles of
a number of MHD variables measured at the disk midplane,
and the power-law fits to them. The slight deviation between
these lines shows how the disk structure changes after long time
evolution. At time T = 10,000 we find distinct power laws for
the profiles along the disk for radii up to R � 40. This is the
radius that demarcates a steady state area from the rest of the
disk, where the magnetic field is continuously generated. This
is easiest to infer from the profile of the poloidal magnetic field
profile, which starts deviating from the approximate power law
at R = 40.

Figure 5. Physical quantities along the disk midplane for the reference dynamo
simulation at T = 10,000. Colored lines correspond to different physical
quantities, density ρ, sound speed Cs, rotational velocity Vφ , radial velocity
VR, and the magnetic field component Bθ . The thick dashed lines show the
corresponding approximation by a power law. The thin dashed lines show the
initial power-law distribution, slightly offset from the actual distribution at
T = 10,000.

(A color version of this figure is available in the online journal.)

In order to better compare the analytical fits to the radial
profiles resulting from the dynamo simulation to those without
the dynamo (Paper I), we plotted the fits with the same power-
law indices as for Paper I. We see that the actual profiles (for
example, the density) show only a tiny deviation.

At time T = 10,000, we find the following numerical values
for the power-law coefficients βX for different variables at the
midplane X(r, θ = π/2) ∼ rβX . The disk rotation remains
Keplerian over the whole time evolution, therefore βVφ

= −1/2.
The radial profiles for density and thermal pressure slightly
change from their initial distributions. The power-law index of
the density changes from βρ = −3/2 to about βρ = −4/3,
while for the pressure it changes from βP = −5/2 to about
βP = −20/9. We find βVR

= −2/5 for the accretion velocity
and βBθ

= −5/4 for the poloidal magnetic field. The accretion
velocity remains subsonic everywhere in the disk with an
accretion Mach number of MR ≡ VR/Cs � 0.08. As expected,
we find strong fluctuations in the area where the dynamo is
active and field magnetic generation is ongoing.

Following Ferreira & Pelletier (1995) and considering the
mass accretion rate Ṁacc ∼ R2ρVR , it is easy to derive the
ejection index ξ = 2 + βρ + βVR

,6 which is a measure of the
efficiency of the outflow. We find ξ = 0.25, about the same
value as for the non-dynamo simulation (see Paper I).

In this section, we have demonstrated that the radial profiles
for disk dynamics along the midplane are very similar to the
simulations including dynamo action and those without dynamo
(in Paper I). We find several reasons for this explanation. First, in
the case of a moderately weak magnetic field, the disk dynamics
is primarily governed by the hydrodynamical quantities, but
not so much the magnetic field. The power-law nature of the
Keplerian rotation dominates the dynamics and forces the other
hydrodynamical profiles into power-law distributions as well.

6 Steady state and a power-law nature of the accretion rate is implicitly
assumed.

7



The Astrophysical Journal, 796:29 (14pp), 2014 November 20 Stepanovs, Fendt, & Sheikhnezami

Second, the magnetic field strength resulting from the disk
evolution is of the same order for both approaches, μ ≈ 0.01,
which can also lead to profiles with the same distribution.

3.5. Dynamo versus Non-dynamo Simulations

Here we discuss the major differences between the simula-
tions with and without the mean-field α2Ω dynamo. As pointed
out in the previous sections, the major difference between dy-
namo and non-dynamo simulations is the structure of the mag-
netic field and not so much the accretion disk hydrodynamics.
The dynamo generates the magnetic field that is continuously
spreading over the whole disk. In the early stage of the disk
evolution, this makes a substantial difference. Later, when the
inner part of the disk has reached steady state, this part of
the disk looks very much the same except for a few details.
One difference can be found concerning the disk wind close
to the disk surface. In a dynamo simulation, the sonic surface
and the Alfvén surface are located 20%–30% further up into
the outflow. However, the magnetic lever arm (radius of the
Alfvén point) is about the same. This is the result of the vertical
component of the magnetic field being stronger with the lower
inclination of the magnetic field with respect to the disk surface
being more inclined toward the disk surface. The launching area,
namely, the area where the velocity field changes from being
almost perpendicular to the magnetic field into being parallel to
the field (see Paper I), is now wider, while the disk surface stays
at about the same level. Note that because of the evolving loop-
like structure of the magnetic field, the field inclination with
respect to the disk or the sonic surface does change in time and
space, except the inner disk where steady state has established.

In order to study the jet properties with respect to the actual
disk magnetization, we have performed several simulations,
varying the μ0 parameter in the definition of the diffusivity
(Equation (5)). This parameter indirectly governs the resulting
disk magnetization, as discussed above and also in Paper I. By
running simulations with different μ0, we were able to probe
the resulting actual magnetization of the poloidal component
in the inner disk over a range μact = 0.01–0.05. As shown in
Paper I, it is in this range of magnetization where a change in
the dominant launching mechanism takes place.

In comparison, we find that in our dynamo simulations that
the disk and jet properties do not really differ for different
actual magnetizations, and we cannot disentangle different
launching mechanisms in the dynamo simulations. In contrast,
the disk quantities as well as the jet integrals (see Paper I)
behave rather similarly in this range of magnetization for both
simulations.

In order to disentangle the causes for this similar evolution,
we recall two points. The main reason why we can distinguish
two different mechanisms in the non-dynamo simulation is the
ability to generate a strong magnetic shear with a sufficiently
weak poloidal magnetic field. This is possible because the
diffusivity in the standard model depends only on the poloidal
magnetic field. Thus, for a weak poloidal field, the diffusivity
is also small, which helps sustain the strong magnetic shear. In
contrast, in the current study, the magnetic diffusivity depends
on the average total magnetic field in the disk. Therefore,
a strong magnetic shear (a stronger toroidal magnetic field)
directly increases the diffusivity, and, as a consequence, limits
the magnetic shear.

This more subtle interrelation between the simulation param-
eters and physical processes again emphasizes the impact of the
magnetic diffusivity model applied.

Figure 6. Periodic step function applied for the toy model of a time-variable
disk dynamo. Here the dynamo α is simply modulated by the periodic step
function. Thus, the dynamo is switched on after periods of nT0 and switched
off at nT0 + ΔT .

(A color version of this figure is available in the online journal.)

4. EPISODIC JET EJECTION TRIGGERED BY A
TIME-VARIABLE DISK DYNAMO

In this section, we present simulation results of a toy model
applying a time-dependent dynamo action. Our motivation is the
following. The dynamo is intrinsically a stochastic phenomenon
that in real accretion disks can be subject to strong fluctuations.
Some accretion disks may exist in which the dynamo action is
suppressed, while in other disks if certain conditions are met
the dynamo can start to operate. Also, the dynamo quenching
mechanism can stop an already working dynamo, and thus lead
to a reconfiguration of the disk–jet system. Here we refer to the
well-known solar cycle as an example. It is believed that a solar
dynamo is responsible for the reconfiguration of the magnetic
field of the Sun. The strong toroidal field component reveals
itself as sunspots with a cyclic appearance. This solar periodicity
can be understood as triggered by a constantly operating dynamo
(or maybe by different types of dynamos). Another interesting
feature of the solar activity in this respect is that it exhibits
long-term minima (Eddy 1976), during which there were no
sunspots observed at all. It is believed that during these minima
the dynamo action is either strongly suppressed or completely
switched off.

For our accretion–ejection simulations we follow a prelim-
inary approach and apply a simple toy model to explore the
impact of such an effect for jet-launching. We multiply the
spatial α profile with a time-dependent function. Here we
apply a periodic step function (Figure 6) by which we con-
tinuously switch on and off the dynamo in the disk. The pe-
riodic step function is characterized by its period T0 and time
length of a step function ΔT . In other words, T0 is the pe-
riod of the dynamo cycle and ΔT the activity cycle of the dy-
namo. Below, we present the simulation with T0 = 1000 and
ΔT = 400.

Essentially, the modulation of the dynamo-α leads to the
variation of the disk magnetization (Figure 7) with the same
periodicity. The strength of diffusivity is chosen such that
without a dynamo working in the disk, the advection of the
magnetic flux with the accreted material cannot balance the
outward diffusion of the magnetic field. This eventually results
in a decrease of the disk magnetization. As previously shown
(see Paper I for details), there exists a limit on the strength of the
magnetization below which the disk cannot sustain a jet. When
the disk magnetization decays below the level of μ ≈ 10−3 the
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Figure 7. Time evolution of the actual disk magnetization μact of the refer-
ence dynamo simulation (blue line) and time-dependent dynamo simulation
(green line).

(A color version of this figure is available in the online journal.)

strong jet disappears. On the other hand, if the dynamo action
is re-established, the disk magnetization grows again and the
outflow is re-launched.

We performed a series of parameter runs, varying both T0 and
ΔT . In principle, different scenarios are possible, depending not
only on the period of the step function, but also on the magnetic
diffusivity and the dynamo parameter (and various combinations
of those).

In order to generate episodic ejection events, and thus re-
establish a jet-driving magnetic field structure, several condi-
tions have to be met by the dynamo process. First, the dynamo
must be strong enough in order to generate the magnetic field
sufficiently fast. Second, in order to suppress the jet ejection
during consecutive switch-off periods, (nT0 − ΔT ), these peri-
ods should be sufficiently long and/or the magnetic diffusivity
should be sufficiently high. Only when the inner disk magnetiza-
tion decreases below μ ≈ 10−3, the jet launching can no longer
be sustained and the strong outflow disappears. The overall evo-
lution of these processes depends on both the periods T0 and
ΔT of the step function.

The interplay among dynamo action, accretion, and diffusion
may lead to different scenarios for the episodic ejection events. If
the switch-off period of the dynamo is shorter than the timescale
for the magnetic field to diffuse out, the jet ejection will be
constantly sustained, and the jet mass and energy fluxes will
be just modulated. If the disk magnetization decays below the
value than is necessary to drive a jet, and if the dynamo is
weak or works only for a short time, the magnetic field will
not be re-established adequately, and, therefore no new jet will
be ejected.

Applying such a toy model we are able to produce episodic jet
events, during which the jet as well as the disk variables undergo
substantial changes. The change of the disk magnetization
directly affects both accretion and ejection processes. As the
magnetization varies in time, the other physical quantities also
vary. As discussed in Paper I, the accretion Mach number
MR = VR/Cs is tightly related to the disk magnetization.
Figure 8 clearly shows that variations in the disk magnetization
triggered by the time-dependent dynamo directly affect the disk
accretion.

Figure 8. Time evolution of the accretion Mach number MR of the refer-
ence dynamo simulation (blue line) and time-dependent dynamo simulation
(green line).

(A color version of this figure is available in the online journal.)

Figure 9 shows the time evolution of a time-dependent
dynamo simulation. As for the case when we discuss the
evolution of the reference simulation (Figure 1), we show
only a small cylindrical part of the whole spherical domain.
We kept all parameters the same as in the reference dynamo
simulation, just folding the dynamo term with the periodic
step function. Obviously, compared to the reference dynamo
simulation, the overall structure of the disk–jet system changes
in time—substantially, and not smoothly as for the case of a
constant dynamo effect. The dynamo is working until T = 400
when it is switched off. Therefore, before T = 400 the evolution
of the disk and outflow was identical to that previously discussed
(see Figure 1). Between T = 400 and T = 1000 the generation
of the magnetic field by the dynamo was switched off. As
a consequence, the magnetic field diffuses substantially and
the jet velocity decreases. Although the disk magnetization is
continuously decreasing, a weak outflow is still present. It is
the period when the dynamo is switched off (T0 − ΔT ) which
indirectly limits the disk magnetization. The more time is given
to diffuse away the magnetic field, the smaller the resulting
disk magnetization will be in the period when the dynamo is
switched off.

At T = 1000, the dynamo is switched on again, and the
generation of the magnetic field is re-established. Because
the dynamo-α is rather high and a substantial magnetic flux
has remained from the previous cycle, it takes rather little
time to reach sufficient magnetization again for strong outflow
launching. Once the substantial magnetization of the disk is
reached, μ ≈ 10−3, the outflow is re-launched. from the inner
part of the disk, the outflow re-establishes in the outward
direction. Advection of the magnetic flux, together with the
accretion material, leads to amplification of the magnetization.
At T = 1400 the typical magneto-centrifugal structure of
the magnetic field is re-established and a quasi-steady outflow
re-appears, thus closing the activity cycle. Essentially, these
magnetic cycles and subsequent jet ejection are repetitive.
However, they are not necessarily identical, due to the magnetic
field structure remaining from the previous cycle.

We note that the dynamo mechanism discussed above is
able to regenerate the magnetic field in the disk completely.
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Figure 9. Time evolution of the disk–jet structure of the simulation with time-dependent dynamo action. Only a small cylindrical part of the whole spherical domain is
presented. Shown is the velocity (colors), the poloidal magnetic field lines (thin black lines), and the sonic (red line), the Alfvén (white line), and the fast magnetosonic
(white dashed line) surfaces.

(A color version of this figure is available in the online journal.)

This is indeed different from the case of simple modulation
by the change in the magnetic diffusivity parameter αssm. In
Paper I, we have shown that the diffusivity parameter αssm is very
crucial for determining the actual disk magnetization. Without
a disk dynamo, we were able to modulate the outflow simply
by varying the αssm parameter; however, it was impossible to
drastically affect the structure of the magnetic field, as we can
now do with the dynamo.

4.1. Structure and Evolution of the Episodic Jets

Figure 10 presents a time series of snapshots of the high-
speed outflow propagating close to the axis. Again, we show
only a small cylindrical part of the whole spherical domain,
choosing time and space scales in order to display the main
outflow features. In order to show the typical stages of the
episodic ejection generation and propagation we have chosen
the three dynamical time step times T = 450, 1450, 3450 of
our simulation lasting 10,000 dynamical time steps.

First, we see how the outflow is initially generated (thus
from the first cycle of dynamo activity) and then propagates
throughout the hydrostatic corona. After switching off the
dynamo at T = 400, the jet weakens until it almost completely
disappears. The dynamo becomes active again at T = 1000. At
T = 1450 that first ejection has already reached R ≈ 1100, just
when another “jet” has been launched. At an even later time,
T = 3450, this second knot has established an outflow, and a
third knot is launched.

The timescales we have chosen are such that we can follow
multiple ejection events on our grid. The time T = 1000 would
correspond to about T/2π inner disk rotations, thus about a year
if we apply the inner disk radius R0 = 0.1 AU. For comparison,
jet observations of young stars suggest the timescales between
the knots τknot � ΔL/vjet ∼ to be about 10 yr. If the knot
generation mechanism is indeed triggered by a disk dynamo,
the timescale for the field reversals must be longer.

In the two middle panels of Figure 10, we clearly see two
fast rapidly moving gas ejections. These parcels of ejected
material are separated from each other by the typical period

of the dynamo T0, corresponding to about 1000r0 distance
between them. The ejected material rams into the gas which
is left from the previous parcel and which moves with lower
velocity. Shocks that can be clearly seen in the density map7

are generated. We may interpret the repeated ejections as jets
knots; however, a more detailed (future) investigation would be
necessary to confirm this picture.

We may clearly identify the signatures of the inflow from
the inner coronal boundary into the domain along the outflow
axis for low z < 200. As discussed above, this axial inflow
is essential to provide the gas pressure that balances the
collimation forces of the outflow in the vicinity of the disk. In our
simulations, it is injected artificially by the boundary condition;
however, an astrophysical interpretation could be that of a wind
driven by the central object.

4.2. Self-induced Magnetic Field Regeneration

As discussed in the beginning of this section, the dynamo
action is a stochastic, highly non-linear process. We can expect
that under certain conditions the non-linear evolution of the
dynamo is more pronounced than under other conditions. In this
section, we show preliminary results of simulations evolving
in a more stochastic way and which may be considered as a
more natural “switch” for the dynamo mechanism. No artificial
on/off switch has been applied. These simulations consider a
self-induced regeneration of the magnetic field without applying
any additional constraints such as a periodic step function in the
time-dependent dynamo profile.

In our simulations we have observed very similar self-induced
regeneration processes of the magnetic field under different
conditions. Thus, there seem to be several ways how a self-
induced switch of the dynamo regeneration can take place.
Some of them require the presence of a quenching mechanism.
Without that, the magnetic flux will be continuously generated
in the inner disk and will eventually fill the entire disk with
magnetic field of one dominant polarity.

7 The shock structure is also visible in the pressure distribution and also in
the jumps in the velocity profile along the jet (not shown as figure).
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Figure 10. Structure of the simulation with time-dependent dynamo action shown at T = (450, 1450, 3450), from top to bottom. Plots are grouped in twos. Shown
by color density logarithm (upper plot) and jet speed (lower plot). Maximum density is set to 10−4. Black lines show the magnetic field. The white line represents the
sonic surface. Arrows show the normalized velocity vectors.

(A color version of this figure is available in the online journal.)
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Figure 11. Example simulation resulting in two opposite magnetic loops
generated by the dynamo. Shown is the mass density (colors, logarithmic
scale), the poloidal magnetic field lines (black lines, dashed lines show opposite
magnetic flux), the sonic surface (red line), and the Alfvén surface (white line)
at time T = 1000. Arrows show normalized velocity vectors.

(A color version of this figure is available in the online journal.)

One possibility to establish a self-induced switch for the
magnetic field, is to initiate the simulation with the disk filled
by toroidal magnetic field of a different polarity. Then the
poloidal magnetic field that is generated by the dynamo will
have different polarities as well. Constant field amplification
will lead to the accretion/advection of this magnetic structure.
As these structures move toward the center, the generation of
the magnetic field in the innermost structure will be quenched,
while the magnetic flux in the outer disk will continue to grow.
As a consequence these structures merge (by diffusion) and
decay, and a quiescent period of outflow launching follows.

Another way is to link the dynamo term to the toroidal
magnetic field. As discussed above, the poloidal magnetic
field in the outer disk has the opposite polarity to the inner
disk magnetic field. Thus, in this case an additional feedback
channel is provided that, under certain circumstances, can lead
to a more fluctuating evolution of the disk–outflow system.
The last example that surprisingly showed such self-induced
regeneration of the magnetic field is our reference simulation,
but with lower dynamo-term αD = −0.03. Figure 11 shows
the magnetic field structure in the disk of one such simulation.
We have observed that sometimes the dynamo generates several
magnetic field loops in the disk. While the magnetic field in
the inner disk is able to quench the dynamo, in the outer disk
the magnetic field is continuously amplified. The magnetic
flux generated in the outer disk is of opposite polarity. If
advected inward, it will eventually reconnect with the magnetic
flux in the inner disk. During this cancellation (reconnection)
process, the disk magnetization in the jet launching region will
decrease below a critical level, jet launching will decay, and the
outflow will disappear. At later stages, when the magnetic field
remaining from the reconnection process becomes sufficiently
amplified by the dynamo, the outflow will be launched again.

The details of the process of magnetic field regeneration
in fact depends on many model parameters, in particular
the magnetic diffusivity model. Although this might be an

interesting mechanism triggering episodic events, we do not
present details here, since we were not yet able to get it to work
robustly and to run the simulation longer than for just a few
regenerations.

5. CONCLUSIONS

We have presented results of MHD simulations investigating
the generation of the magnetic field by the accretion disk
dynamo in the context of jet and outflow launching. The
time evolution of the disk structure is self-consistently taken
into account. The simulations are performed treating all three
field components while preserving/keeping axial symmetry. We
apply the MHD code PLUTO-4.0, which we have modified for
the mean-field α2Ω dynamo problem in the induction equation.

In the present work, we explored the generation of a large-
scale global magnetic field. Our simulations were initiated by the
purely radial magnetic field with magnetization μinit = 10−5.
We showed in detail how the magnetic field is being generated
and through which consecutive stages it evolves, acquiring in
the end the ability to launch jets and outflows. In this respect,
our simulations can be seen as a continuation of the early works
by von Rekowski et al. 2003 and von Rekowski & Brandenburg
2004. In our paper, we concentrated more on the jet and outflow
generation and propagation.

One advantage of our simulations is that our model keeps the
disk magnetization at a rather low level. Therefore, the magnetic
field does not substantially affect the disk hydrodynamics, and
allows us to evolve our simulations for very long time. Each
simulation has been evolved at least up to T = 10,000 on a
spherical domain with R = [1, 1500].

In the following, we summarize our main results.

1. In our simulations treating a mean-field disk dynamo,
we distinguish two main features in the magnetic field
structures. The magnetic field of the inner disk that is similar
to the commonly found open field structure, favoring a
magneto-centrifugal launching of the outflow. The poloidal
magnetic field of the outer part of the disk is highly inclined
and predominantly radial. Differential rotation induces a
very strong toroidal component from it. Such a structure is
similar to what is known as a tower jet or Poynting jet in
literature. In this part of the disk, it is the toroidal magnetic
field that plays a key role in outflow launching. First, below
the disk surface (VR = 0) the matter is lifted by the buoyant
force of the magnetic field, and thus, by the gradient of the
thermal pressure. Starting from the disk surface (VR = 0),
the matter is further accelerated by the pressure gradient of
the toroidal magnetic field. The outflows from the outer part
of the disk are typically slower, denser, and less collimated,
thus corresponding to a higher mass loading.

2. In principle, the dynamo can fill the entire accretion disk
with magnetic flux. Thus, if the dynamo action is not
quenched, magnetic flux is continuously generated, diffuses
outward along the disk until it fills the entire disk. This loop-
like structure of the magnetic field, which is typical for a
dynamo, propagates further outward.

3. As soon as the disk magnetization reaches a critical limit,
μ > 10−3, disk winds are launched and can be accelerated
to super-magnetosonic speed. This result is complemen-
tary to our earlier simulations that do not consider dynamo
(Stepanovs & Fendt 2014b), and where the critical magne-
tization was obtained just from advection of magnetic flux
by accretion. Thus, again we can confirm the longstanding
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belief that disk magnetization plays a key role in outflow
launching. In the inner disk, the rate of generation of mag-
netic field by the dynamo is higher, leading to a strong
gradient of the disk magnetization.

4. We have further invented a toy model triggering a time-
dependent efficiency of the mean-field dynamo. In that
model approach, we periodically switch the dynamo on
and off. This strongly affects the magnetic field structure.
The decay of magnetic flux by diffusion can be completely
balanced by the dynamo that regenerates the magnetic
field. As a consequence, the duty cycles of the dynamo
action can lead to episodic jet ejection, depending on
the disk magnetization obtained during dynamo activity.
When the dynamo is suppressed and the disk magnetization
falls below a critical value, μ ≈ 10−3, the generation of
outflows as well as the accretion is substantially inhibited.
We have chosen the timescale of the dynamo cycle and
the corresponding timescale for the episodic ejections to
be somewhat shorter compared to the observed values, just
because we wanted to follow several events in the same
simulation box. However, the main—and general—result
is that we can steer the episodic ejection and large-scale
jet knots by the disk-intrinsic dynamo, which is time-
dependent and regenerates the jet-launching magnetic field.

5. Concerning the disk hydrodynamics, we find that the ac-
cretion velocity follows the same power law βVR

≈ −2/5
for the simulations with and without dynamo. This is inter-
esting also because we have applied slightly different diffu-
sivity models, leading to different magnetic field structures.
Nevertheless, the accretion profiles are approximately the
same. As a consequence, we also find approximately the
same ejection index ξ ≈ 0.25.

6. Although the dynamo and non-dynamo simulations are
significantly different, the launching mechanism of the fast
jet is primarily the same. Thus, from a purely observational
point of view, one would not yet be able to distinguish
whether the jets are launched from a dynamo-generated
magnetic field or from a magnetic field advected from the
interstellar medium.

In summary, we have shown the accretion–ejection evolution
considering a magnetic field self-generated by a mean-field
disk dynamo. Repetitive ejection could be obtained by a time-
dependent dynamo α. A future step could be to consider the
dynamo action for the strong-field case. That might be realized
by implementing both an MRI dynamo and a Parker dynamo by
means of different dynamo α. Another step would be to have
a more direct link between the actual magnetic field and the
dynamo.

We thank Andrea Mignone and the PLUTO team for the
opportunity to use their code. The simulations were performed
on the THEO cluster of the Max Planck Institute for Astronomy.
This work was partly financed by the SFB 881 of the German
science foundation DFG.

APPENDIX

RESOLUTION STUDY

We shortly discuss the results of our resolution study. We
have performed simulations with a grid resolution of 0.75, and
1.5 times our standard resolution of Nθ = 128 cells per quadrant,
corresponding to Nθ = 96 and Nθ = 192 cells per quadrant, or

Figure 12. Resolution study. Physical quantities along the midplane for the
simulations with different resolution at T = 10,000. From top to bottom the
resolution is (12, 16, 24) cells per disk height (2ε). Colors show different variable
profile, thick dashed lines correspond to certain power laws, and the mismatched
thin dashed lines correspond to initial distributions of variables.

(A color version of this figure is available in the online journal.)

approximately 12 or 24 cells per disk height 2ε compared to 16
cells per disk height in our reference run.8

Figure 12 shows the dynamical profiles the three simulations
of our resolution study. The radial profiles are plotted along the

8 Note that once the resolution in the θ direction and the radial extent of the
disk is chosen, the resolution in the R direction is uniquely determined (see
Section 2, or Paper I).
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midplane for various dynamical variables at time T = 10,000.
As discussed in Section 3.4 these profiles can be nicely fitted
by power laws. The same power-law index also provides the
same ejection to accretion index. Therefore, we conclude that
our results are not resolution dependent.

However, several differences between these curves can be
noticed. The inner part of the disk for the simulation with
lower resolution indicates a substantial deviation from the
corresponding power law. We also find that for a lower resolution
the accretion speed increases, and, as a consequence, the overall
density in the disk decreases. This highlights the effect of
the numerical viscosity that enhances the angular momentum
transfer in the disk. On the other hand, the magnetic field is
diffused out faster and to a larger distance. This indicates a
higher numerical resistivity for the case of lower resolution.
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