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ABSTRACT

We investigate the launching of jets and outflows from magnetically diffusive accretion disks. Using the PLUTO
code, we solve the time-dependent resistive magnetohydrodynamic equations taking into account the disk and jet
evolution simultaneously. The main question we address is which kind of disks launch jets and which kind of disks do
not? In particular, we study how the magnitude and distribution of the (turbulent) magnetic diffusivity affect mass
loading and jet acceleration. We apply a turbulent magnetic diffusivity based on α-prescription, but also investigate
examples where the scale height of diffusivity is larger than that of the disk gas pressure. We further investigate how
the ejection efficiency is governed by the magnetic field strength. Our simulations last for up to 5000 dynamical
timescales corresponding to 900 orbital periods of the inner disk. As a general result, we observe a continuous and
robust outflow launched from the inner part of the disk, expanding into a collimated jet of superfast-magnetosonic
speed. For long timescales, the disk’s internal dynamics change, as due to outflow ejection and disk accretion the
disk mass decreases. For magnetocentrifugally driven jets, we find that for (1) less diffusive disks, (2) a stronger
magnetic field, (3) a low poloidal diffusivity, or (4) a lower numerical diffusivity (resolution), the mass loading of
the outflow is increased—resulting in more powerful jets with high-mass flux. For weak magnetization, the (weak)
outflow is driven by the magnetic pressure gradient. We consider in detail the advection and diffusion of magnetic
flux within the disk and we find that the disk and outflow magnetization may substantially change in time. This
may have severe impact on the launching and formation process—an initially highly magnetized disk may evolve
into a disk of weak magnetization which cannot drive strong outflows. We further investigate the jet asymptotic
velocity and the jet rotational velocity in respect of the different launching scenarios. We find a lower degree of jet
collimation than previous studies, most probably due to our revised outflow boundary condition.

Key words: accretion, accretion disks – galaxies: active – galaxies: jets – ISM: jets and outflows –
magnetohydrodynamics (MHD) – stars: pre-main sequence

Online-only material: color figures

1. INTRODUCTION

Jets as highly collimated beams of high-velocity material
and outflows of comparatively lower degree of collimation and
lower speed are an ubiquitous phenomenon among astrophysical
objects. Jets are powerful signs of activity and are observed over
a wide range of luminosity and spatial scale. Among the jet
sources are young stellar objects (YSOs), micro-quasars, active
galactic nuclei (AGNs), and most probably also gamma-ray
bursts (Fanaroff & Riley 1974; Abell & Margon 1979; Mundt &
Fried 1983; Rhoads 1997; Mirabel & Rodrı́guez 1994). The
common models of launching, acceleration, and collimation
work in the framework of magnetohydrodynamic (MHD) forces
(see, e.g., Blandford & Payne 1982; Pudritz & Norman 1983;
Uchida & Shibata 1985), although the details of the process are
not fully understood.

Jets and outflows from YSO and AGNs affect their environ-
ment, and, thus, the formation process of the objects that are
launching them. Numerous studies investigate effects of such
feedback mechanisms in star formation and galaxy formation
(see, e.g., Banerjee et al. 2007; Carroll et al. 2009; Gaibler
et al. 2012). However, a quantitative investigation of how much
mass, momentum, or energy from the infall is actually recy-
cled into a high-speed outflow needs to resolve the innermost
jet-launching region and to model the physical process of

launching directly. This is the major aim of the present
paper.

According to the current understanding, accretion and ejec-
tion are related to each other. One efficient way to remove an-
gular momentum from a disk is to connect it to a magnetized
outflow. This has been motivated by the observed correlation
between signatures of accretion and ejection in jet sources (see,
e.g., Cabrit et al. 1990; Hartigan et al. 1995).

The overall idea is that the energy and angular momentum
are extracted from the disk by an efficient magnetic torque
relying on a global, i.e., large-scale magnetic field threading
the disk. If the inclination of the field lines is sufficiently
small, magnetocentrifugal forces can accelerate the matter along
the field line. Beyond the Alfvén point Lorentz forces also
contribute to the acceleration. The collimation of the outflow
is thought to be achieved by magnetic tension due to a toroidal
component of the magnetic field. Still, we have to keep in mind
the fact that the toroidal field pressure gradient is de-collimating,
and an existing external gas overpressure may contribute to jet
collimation.

Before going into further detail, we wish to make clear that
with jet formation we denote the process of accelerating and
collimating an already existing slow disk wind or stellar wind in
to a jet beam. With jet launching we denote the process which
conveys material from radial accretion into a vertical ejection,
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thereby lifting it from the disk plane into the corona, and thus
establishing a disk wind.

A vast literature exists on MHD jet modeling. We may
distinguish (1) between steady-state models and time-dependent
numerical simulations, or (2) between simulations considering
the jet formation only from a fixed-in-time disk surface and
simulations considering also the launching process, thus taking
into account disk and jet evolution together.

Steady-state modeling has mostly followed the self-similar
Blandford & Payne approach (e.g., Sauty & Tsinganos 1994;
Contopoulos & Lovelace 1994), but fully two-dimensional mod-
els were also proposed (Pelletier & Pudritz 1992; Li 1993), some
of them taking into account the central stellar dipole (Fendt et al.
1995; Paatz & Camenzind 1996). Further, some numerical solu-
tions have been proposed by Königl et al. (2010), Salmeron et al.
(2011), and Wardle & Königl (1993) in weakly ionized proto-
stellar accretion disks that are threaded by a large-scale magnetic
field as wind-driving accretion disks. They have studied the ef-
fects of different regimes for ambipolar diffusion or Hall and
Ohm diffusivity dominance in these disk. (Self-similar) Steady-
state models have also been applied to the jet-launching domain
(Ferreira & Pelletier 1995; Li 1995; Casse & Ferreira 2000), con-
necting the collimating outflow with the accretion disk structure.
In addition to the steady-state approaches, the magnetocentrifu-
gal jet formation mechanism has been subject of a number of
time-dependent numerical studies. In particular, Ustyugova et al.
(1995) and Ouyed & Pudritz (1997) have demonstrated for the
first time the feasibility of the MHD self-collimation property
of jets. We note, however, that it was already 1985 when the
first jet formation simulations were published, in that case for
a much shorter simulation timescale (Shibata & Uchida 1985).
Among these works, some studies investigated artificial colli-
mation (Ustyugova et al. 1999), a more consistent disk boundary
condition (Krasnopolsky et al. 1999), the effect of magnetic dif-
fusivity on collimation (Fendt & Čemeljić 2002), or the impact
of the disk magnetization profile on collimation (Fendt 2006).
In the aforementioned studies, the jet-launching accretion disk
is taken into account as a boundary condition, prescribing a
certain mass flux or magnetic flux profile in the outflow. This
is a reasonable setup in order to investigate jet formation, i.e.,
the acceleration and collimation process of a jet. However, such
simulations cannot reveal the efficiency of mass loading or an-
gular momentum loss due to flux from disk to jet, or answer the
question of which kind of disks do launch jets and under which
circumstances.

It is therefore essential to extend the jet formation setup and
include the launching process in the simulations. Numerical
simulations of the MHD jet launching from accretion disks
have been presented first by Kudoh et al. (1998) and Casse &
Keppens (2002), treating the ejection of a collimated outflow
out of an evolving-in time resistive accretion disk. Zanni
et al. (2007) further developed this approach with emphasis on
how resistivity affects the dynamical evolution. An additional
central stellar wind was considered by Meliani et al. (2006).
Further studies were concerned with the effects of the absolute
field strength or the field geometry, in particular investigating
field strengths around and below equipartition (Kuwabara et al.
2005; Tzeferacos et al. 2009; Murphy et al. 2010). The latter
were long-term simulations for several hundreds of (inner) disk
orbital periods, providing sufficient time evolution to also reach
a (quasi) steady state for the fast jet flow.

Finally, we would like to emphasize the fact that jets and
outflows are observed as bipolar streams. Jets and counter-jets

appear typically asymmetric with only very few exceptions.
One exception is the protostellar jet HH 212 showing an almost
perfectly symmetrical bipolar structure (Zinnecker et al. 1998).
So far, very few numerical simulations investigating the bipolar
launching of disk jets have been performed. Among them are
the works of von Rekowski et al. (2003) and von Rekowski &
Brandenburg (2004) which even included a disk dynamo ac-
tion. Recent publications consider asymmetric ejections of stel-
lar wind components from an offset multi-pole stellar magne-
tosphere (Long et al. 2008, 2012; Lovelace et al. 2010). It is
therefore interesting to investigate the evolution of both hemi-
spheres of a global jet–disk system in order to see whether
and how a global asymmetry in the large-scale outflow can be
governed by the disk evolution. This has not been done so far.

In a series of two papers, we will address both the detailed
physics of MHD jet launching (Paper I) and the bipolarity
aspects of jets (Paper II). In the present paper (Paper I),
we investigate the details of the launching, acceleration, and
collimation of MHD jets from resistive magnetized accretion
disks. We investigate how the mass and angular momentum
fluxes depend on the internal disk physics applying long-lasting
global MHD simulations of the disk–jet system. We hereby
investigate different resistivity profiles of the disk. This paper is
organized as follows. Section 2 is dedicated to MHD equations
and to describing the numerical setup, the initial and boundary
conditions of our simulations. The general evolution of jet
launching and the physical processes involved are presented
in Section 3 with the help of a reference simulation. Section 4 is
then devoted to a parameter study comparing jets from different
setups.

In Paper II, we will present the bipolar jet simulations,
discussing their symmetry properties, and how symmetry can
be broken by the intrinsic disk evolution.

2. MODEL SETUP

We model the launching of an MHD outflow from a slightly
sub-Keplerian disk, initially in pressure equilibrium with a non-
rotating disk corona.

As illustrated in Figure 1, matter is first accreted radially
along a disk surrounding a central object and is then loaded
on to the magnetic field lines. The large-scale magnetic field
is threading the disk and thereby connects the accretion and
ejection processes.

Our main goals are

1. to determine the relevant mass fluxes (mass ejection and
accretion rate) and to study the influence on them by the
leading physical parameters, such as magnetic diffusivity
and magnetic field strength,

2. to determine the resulting jet geometry—that is the asymp-
totic jet radius and opening angle, along with the size of
the jet-launching area of the disk and the asymptotic jet
velocity.

We will in a follow-up paper further extend our setup into two
hemispheres, to investigate the launching of bipolar jets and
their symmetry characteristics. The relevant mass and energy
fluxes for accretion and ejection are of essential interest for
feedback mechanisms in star or galaxy formation. With our
highly resolved simulations of the innermost regions of these
objects we intend to quantify these properties for a range of
possible parameters.
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Figure 1. Schematic display of the outflow launching process from accretion
disks. Matter (dashed lines) is accreted along the disk surrounding a central
object and is loaded on to the magnetic field lines (solid lines). The emerging
disk wind is further accelerated and collimated into a high-velocity beam (jet
formation).

2.1. MHD Equations

For our numerical simulations, we apply the MHD code
PLUTO 3.01 (Mignone et al. 2007), solving the conservative,
time-dependent, resistive, inviscous MHD equations, namely,
for the conservation of mass, momentum, and energy,

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂(ρv)

∂t
+ ∇ ·

[
vρv − B B

4π

]
+ ∇

[
P +

B2

8π

]
+ ρ∇Φ = 0, (2)

∂e

∂t
+ ∇ ·

[(
e + P +

B2

8π

)
v − (v · B)

B
4π

+ ( ¯̄η : j ) × B
4π

]
= −Λcool. (3)

Here, ρ is the mass density, v is the velocity, P is the thermal
gas pressure, B is the magnetic field, and Φ = −GM/R is the
gravitational potential of the central object of mass M, with
the spherical radius R = √

r2 + z2. In general, the magnetic
diffusivity is defined as a tensor ¯̄η (see Section 2.5). The
evolution of the magnetic field is described by the induction
equation,

∂ B
∂t

− ∇ × (v × B − ¯̄η : j ) = 0 (4)

with the electric current density j given by Ampère’s law
j = (∇ × B)/4π . The cooling term Λ can be expressed in
terms of Ohmic heating Λ = gΓ, with Γ = ( ¯̄η : j ) · j , and with
g measuring the fraction of the magnetic energy that is radiated
away instead of being dissipated locally. For simplicity, here
we adopt g = 1. The gas pressure follows an equation of state
P = (γ − 1)u with the polytropic index γ and the internal
energy density u. The total energy density is

e = P

γ − 1
+

ρv2

2
+

B2

8π
+ ρΦ. (5)

Our simulations are performed in axisymmetry applying
cylindrical coordinates. The CENO3 algorithm as third-order
interpolation scheme is used for spatial integration (Del Zanna
& Bucciantini 2002) together with a third-order Runge–Kutta
scheme for time evolution and an HLL Riemann solver. For
the magnetic field evolution, we apply the constrained transport
method (FCT) ensuring solenodality ∇ · B = 0.

2.2. Units and Normalization

Throughout the paper distances are expressed in units of the
inner disk radius ri, while pd,i and ρd,i denote the disk pressure
and density at this radius, respectively. The index “i” refers to a
number value at the inner disk radius at z = 0 and time t = 0.

In Appendix A, we show for comparison the astrophysical
scaling for YSO jets and AGN jets. Typically, ri < 0.1 AU
for YSO and ri < 10 Schwarzschild radii for AGNs. Naturally,
we cannot treat any relativistic effects of AGN jets with our
non-relativistic setup. Velocities are measured in units of the
Keplerian speed vK,i at the inner disk radius. Time is measured in
units of ti = ri/vK,i, which can be related to the Keplerian orbital
period τK,i = 2πti. Pressure is given in units of pd,i = ε2ρd,iv

2
K,i.

The magnetic field is measured in units of Bi = Bz,i. As usual we
define the aspect ratio of the disk ε as the ratio of the isothermal
sound speed to the Keplerian speed, both evaluated at disk mid-
plane, ε ≡ cs/vK.5 For a more details see Appendix A.

2.3. Initial Setup—Disk and Corona

We define initial conditions following a setup applied by other
authors previously—a magnetically diffusive accretion disk is
prescribed in sub-Keplerian rotation, above which a hydrostatic
corona in pressure balance with the disk is located (Zanni et al.
2007; Murphy et al. 2010). The coronal density is chosen several
orders of magnitude below the disk density, thus implying an
entropy and a density jump from disk to corona. However,
contrary to previous authors (Zanni et al. 2007; Tzeferacos et al.
2009; Murphy et al. 2010), we do not apply an initial vertical
velocity profile in the disk and only prescribe a radial velocity
profile. We have seen that for our long-term simulations the
whole disk system adjusts to a new dynamical equilibrium which
does not depend on the vertical profile of the initial velocity
distribution.

2.3.1. Initial Disk Structure

We prescribe an initially geometrically thin disk with ε =
H/r = 0.1 which is itself in vertical equilibrium between
thermal pressure and gravity.

We follow the standard setup employed in a number of
previous papers (Zanni et al. 2007; Murphy et al. 2010).

As initial disk density distribution we prescribe

ρd = ρd,i

(
2

5ε2

ri

r

[
r

R
−

(
1 − 5ε2

2

)])3/2

(6)

(Murphy et al. 2010), while the initial disk pressure distribution
follows:

Pd = Pd,i

(
ρd,i

ρd

)5/3

. (7)

5 In PLUTO the magnetic field is normalized considering 4π = 1.
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The disk is set into slightly sub-Keplerian rotation accounting
for the radial gas pressure gradient and advection,

vφ,d(r) =
√

1 − 5ε2

2

√
GM

r
(8)

following Murphy et al. (2010), but neglecting viscosity.
In our setup the initial poloidal velocity is imposed by hand

following the prescription of Zanni et al. (2007):

vr,d(r) = ε2
√

2μ

(
5

4
+

5

3m2

) √
GM

r
= r

z
vz,d. (9)

Simulations with initially vanishing disk accretion resulted in
the same asymptotic inflow–outflow evolution. Starting with a
disk inflow as in Equation (9), the inflow–outflow structure is
established on a shorter timescale.

2.3.2. Structure of the Coronal Region

Above the disk, we define an initially hydrostatic density and
pressure stratification (the so-called corona),

ρc = ρa,i

( ri

R

) 1
γ−1

, Pc = ρa,i
γ − 1

γ

GM

ri

( ri

R

) γ

γ−1
. (10)

The parameter δ ≡ ρc/ρd quantifies the initial density contrast
between disk and corona. We adopt δ = 10−4.

2.3.3. Magnetic Field Distribution

The initial magnetic field is prescribed by the magnetic flux
function ψ following Zanni et al. (2007):

ψ(r, z) = 3

4
Bz,ir

2
i

(
r

ri

)3/4
m5/4

(m2 + (z/r)2)5/8
. (11)

Here, Bz,0 measures the vertical field strength at (r = ri, z = 0).
The magnetic field components are calculated by rBz = ∂Ψ/∂r
and rBr = ∂Ψ/∂z.

2.4. Numerical Grid

The computational domain spans a rectangular grid region
applying a purely uniform spacing in the radial direction and a
uniform-plus-stretched spacing vertically (Figure 2). We have
run simulations in two different resolutions (see Table 1). For
the low-resolution simulations, the domain extends to (96×288)
inner disk radii ri on a grid of (1500×3200) cells, resulting in a
resolution of Δr = 0.064. For the high-resolution simulations,
the resolution is increased to 0.025 at the cost of being limited to
a smaller domain of (50 × 180)ri. For all simulations presented
here, a uniform grid is used for the magnetically diffusive disk.6

For the typical disk model applied with ε = 0.1 the low
resolution provides only 2 grid cells per disk scale height at
the inner disk radius, while for somewhat larger radii, say at
r = 5, we have about 10 cells per disk scale height. In the high-
resolution runs, the disk resolution is increased by a factor 2.5.
As discussed by Murphy et al. (2010), the low resolution barely
resolves the jet-launching disk surface layer of the very inner

6 Although previous publications have applied a stretched grid also for the
part of the domain enclosing the disk structure (see, e.g., Murphy et al. 2010),
we note that up to the latest version of the code, PLUTO 3.1., the treatment of
magnetic diffusivity is limited to equidistant grids (see the PLUTO user
manual).

Figure 2. Computational domain consisting of two grids and a set of different
boundary conditions. The computational domain covers (1500×1200) uniform
grid cells on a physical domain of (r × z) = (96.0 × 80.0)ri. Another 2000
stretched grid cells are attached in the vertical direction 80.0 < z < 288.0. For
the high-resolution simulations, a physical domain of (50.0 × 50.0)ri is covered
with (2000 × 2000) grid cells to which another 2000 stretched grid cells are
attached in the vertical direction between 50.0 < z < 180.0.

disk, where steep gradients in density, pressure, and diffusivity
are present. Here, numerical diffusivity is supposed to play a
role and we have devoted a section to investigating this effect.

In order to follow the jet outflow over long distances and in
order to provide a sufficient mass reservoir for disk accretion a
large domain would be desirable. In order to resolve the wind-
launching area, a high resolution would be required. However, as
mentioned before, PLUTO in its current version does not allow
for diffusive MHD simulations in a stretched grid. Furthermore,
we experience that for large domains together with stretched
grids (implying an elongated shape of the outer grid cells) the
code had difficulties solving the conservative equation and the
simulations crashed.

2.5. Boundary Conditions

For the boundary conditions, axisymmetry on the rotation axis
and equatorial symmetry for the disk mid-plane are imposed.
At the upper z boundary, we use the standard PLUTO outflow
boundary condition (zero gradient), but at the outer radial
boundary condition, we apply a modified outflow condition
as derived by Porth et al. (2011) in order to avoid artificial
collimation. Most essential is the internal boundary enclosing
the origin which we call a sink.

2.5.1. Internal Boundary—A Central Sink

We prescribe a sink for the mass flux in the very inner region
of the domain. The sink is essential for the following reasons.
First, the numerically problematic singularity at the origin can
be hidden by this internal boundary. Second, the central sink

4



The Astrophysical Journal, 757:65 (23pp), 2012 September 20 Sheikhnezami et al.

Table 1
Input Parameters and Derived Dynamical Parameters of our Simulation Runs Following a Magnetic Diffusivity Profile Equation (13)

with a Scale Height of the Disk Diffusivity εη = 0.4

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10
Δr 0.064 0.064 0.064 0.064 0.064 0.025 0.025 0.064 0.064 0.064
Δz 0.066 0.066 0.066 0.066 0.066 0.025 0.025 0.066 0.066 0.066
εη 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
ηp,i 0.03 0.01 0.15 0.09 0.03 0.03 0.03 0.03 0.03 0.03
ηφ,i 0.09 0.03 0.09 0.27 0.01 0.09 0.09 0.09 0.09 0.09
χ 3 3 3/5 3 1/3 3 3 3 3 3
β 10 10 10 10 10 5000 10 50.0 250 500

rjet,z=180 43.8 73.8 24.46 28.57 33.19 . . . . . . 47.8 50.0 34.13
rjet,z=60 25.01 38.41 15.37 17.72 25.02 21.69 19.6 27.54 24.18 17.22
rl 3.8 8.2 3.0 4.2 3.0 . . . 3.5 2.8 0.8 0.7
vjet,z=170 0.4 0.23 0.85 0.56 0.8 0.47 0.42 0.56 0.49 0.27
vjet,z=280 0.45 0.3 0.92 0.61 0.9 . . . . . . 0.5 0.89 0.22

ζjet,1
a 2.37 0.013 5.28 5.1 2.58 0.89 4.6 1.56 0.32 2.08

Ṁz 0.0005 6 × 10−6 0.0002 0.0002 0.0007 5 × 10−5 0.0008 0.0001 0.0004 0.0002
ζjet,2 2.90 0.3 4.45 6.7 2.28 . . . . . . 2.46 0.42 1.84
Ṁz 0.001 0.0002 0.0003 0.0004 0.001 . . . . . . 0.0003 0.0006 0.0004

Ṁacc
b 0.015 0.022 0.0038 0.0035 0.022 0.001 0.013 0.005 . . . . . .

Ṁejec 0.008 0.016 0.001 0.001 0.007 0.005 0.009 0.004 . . . . . .

Ṁejec/Ṁacc 0.5 0.7 0.2 0.2 0.31 . . . 0.6 . . . . . . . . .

ξ 0.3 0.5 0.09 0.09 0.1 . . . 0.39 . . . . . . . . .

J̇kin 0.008 0.005 0.002 0.002 0.027 0.005 0.005 0.008 . . . . . .

J̇mag 0.03 0.01 0.0025 0.005 0.034 0.0 0.016 0.008 0.0 0.0
J̇tot 0.038 0.015 0.004 0.007 0.06 0.005 0.021 0.017 . . . . . .

Lkin 1 × 10−4 9 × 10−6 1.3 × 10−4 7.4 × 10−5 4 × 10−4 5.5 × 10−6 7.1 × 10−5 3.7 × 10−5 1.9 × 10−4 10−6

Notes. Displayed are the input parameters of grid resolution Δr, Δz, magnetic poloidal and toroidal diffusivity ηp,i and ηφ,i, the diffusivity anisotropy χ , and the
plasma-beta parameter β. The following outflow parameters are derived from our numerical simulations: the asymptotic jet radius rjet, calculated as mass flux weighted
(see Equation (17)), the launching radius rl, the typical speed of the outflow, vjet, the average collimation degree ζjet (see Equation (18)), the mass accretion rate Ṁacc

and mass ejection rate Ṁejec, the ejection index ξ , the diffusive scale height εη , the kinetic and magnetic angular momentum losses by the outflow, J̇kin and J̇mag,
respectively, as well as the total angular momentum loss J̇tot, and its asymptotic kinetic luminosity Lkin = 0.5 xṀzv

2
jet,z. All parameters are given in code units.

a The collimation degree is measured from two different areas, ζjet,1 enclosing 0 � r � 40, 0 � z � 160, and ζjet,2 with the area 0 � r � 80 and 0 � z � 250.
b The mass flux values for the two simulation cases 9 and 10 with high βi are omitted due to their highly perturbed behavior.

allows the accretion flow to be absorbed through the disk and
thus, emulate a central accreting object.

The sink is numerically introduced as an internal boundary
condition, located on the region r < ri and z < zs .7 The internal
boundary conditions defined at the right and top sides of the sink
have significant impact on the simulation. If ill-defined, spurious
effects arise during the early evolution. For the right side of the
sink, we impose accretion conditions implying a zero gradient
for pressure, density, and the vertical velocity component. For
vφ and Bφ , a first-order extrapolation (constant gradient) is
imposed which ensures an angular momentum decrease across
the boundary which is essential for accretion. To allow for
accretion further and also to minimize feedback from the sink
to the domain, we constrain min(0, vri ) in the ghost cells for the
radial velocity component. We assume that the magnetic flux is
not advected into the central object, and we impose Eφ = 0.
The normal component of the magnetic field is calculated from
the solenodality condition along both sides of the sink.

On the top of the sink, we prescribe the initial local value
for the gas pressure. In order to avoid evacuation of the regions
close to the symmetry axis, we impose a density of 110% to the
initial local density. Effectively, this condition replenishes the
mass into the domain near to the axis to overcome numerically
difficult low densities.

7 zs is defined corresponding to the resolution, at least four cells are taken as
a sink height in any run.

2.5.2. Outer Boundary Conditions

An essential point of our setup is to impose a proper
outflow boundary at the outer boundary of the domain in
r-direction avoiding artificial collimation forces. Here, we have
implemented a current-free outflow condition (see Appendix B)
which avoids spurious collimation by Lorentz forces and which
has been thoroughly tested in our previous papers (Porth & Fendt
2010; Porth et al. 2011; Vaidya et al. 2011). In order to enable
a long-term disk–jet simulation requiring a long-living disk
accretion, we need to provide a sufficiently long-lasting mass
reservoir. This could be realized by (1) a prescribed mass inflow,
(2) a local mass replenishment, or (3) providing a large mass
reservoir for jet-launching part of the accretion disk by extending
the outer disk radius to large radii. All these approaches have
been chosen in the literature. We decided to follow option (3) and
provide a sufficiently high-mass reservoir outside of the inner
launching region by extending the computational grid (and thus
the outer disk radius) up to about 100 inner disk radii. Similar
approaches haven been applied by Murphy et al. (2010) and
Long et al. (2012).

We will see below (Section 3.2) that our approach is working
well, but has, however, its limits if applied for long-lasting
simulations. During about 5000 dynamical time steps, we lose
about 30%–40% of the disk mass due to ejection and accretion
and due to unwanted mass loss across the outer disk boundary.
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2.6. The Disk Magnetic Diffusivity

A dissipative effect is required for steady-state accretion
in order to allow matter to diffuse across the magnetic field
threading the disk. Magnetic diffusivity allows the mass flux to
cross the field lines and thus allows for accretion along the disk.
We consider the magnetic diffusivity to be turbulent in nature, or
“anomalous,” and, thus, cannot be calculated self-consistently
in our setup. The origin of the turbulent magnetic diffusivity
is usually referred to being caused by the magnetorotational
instability (MRI; Balbus & Hawley 1991, 1998) in a moderately
magnetized disk.8

Nevertheless, we argue that as we load turbulently diffusive
disk plasma into the outflow, it is natural to assume that the
outflowing material is initially turbulent as well. Therefore, we
have the option of applying a diffusive scale height Hη =
εηr larger than the thermal scale height H = εr of the
disk, supposing that the turbulent disk material lifted into the
outflow will remain turbulent for a few more scale lengths until
turbulence decays. It is clear that the strong magnetization
in the upper layers of the disk will prevent generation of
turbulence by, e.g., the MRI, and will also quench the turbulence
in the outflowing material. Without going into detail we may
estimate the timescale for the decay of the turbulence potentially
existing in the outflowing material as follows. The decay of
(helical) MHD turbulence follows a power law EM ∼ t−n,
where EM is the magnetic energy and the power-law index
depends on further details but is in the range of n = 1/2–2/3
(Brandenburg & Nordlund 2011). Simulations indicate that
MHD turbulence decays as fast as the hydrodynamic turbulence
on a few eddy turnover times (Cho et al. 2002). With τη �
H/cS = εr/cS = r1/2 (in code units), we find a timescale
for the decay of MHD turbulence launched from the disk into
the outflow of, e.g., τη(r = 5) � 3, thus in the range of half an
orbital period. This must be compared to the kinematic timescale
for the jet launching. If we consider the propagation of the
initially slow disk wind over a few disk pressure scale heights
τwind(r = 5) � H/vwind � 0.5/0.05 = 10, we find that this
time is of the order of a few eddy turnovers. Also, we will later
see that jet launching is a rapid process with an outflow having
been established after a few dynamical time steps.

Given the essential role of the magnetic diffusivity for
wind/jet launching, we decided to investigate the launching
process for different strengths and different scale heights of
diffusivity. We have run simulations for a variety of combina-
tions of parameter values, but for the sake of comparison, in
this paper, we show results for diffusive scale height values,
εη = 0.1, 0.2, 0.3, and 0.4.

Formally, we apply an α prescription (Shakura & Sunyaev
1973), similar to previous works (see, e.g., Zanni et al. 2007).
We assume the diffusivity tensor to be diagonal with the non-
zero components

ηφφ ≡ ηp, ηrr = ηzz ≡ ηφ. (12)

Here, we have defined a poloidal magnetic diffusivity ηp ≡
ηφφ = ηp,if (r, z) and the toroidal magnetic diffusivity ηφ ≡
ηrr = ηzz = ηφ,if (r, z), respectively,9 with a function f(r,z)
describing the diffusivity profile.

8 We will later show that we do not resolve the MRI with the numerical
resolution applied in our disk–jet setup (see Section 4).
9 The ηφφ effectively governs the diffusion of the poloidal magnetic field,
while the ηrr and ηzz govern the diffusion of the toroidal magnetic field.

Figure 3. Distribution of the turbulent magnetic diffusivity ηp = ηp,if (r, z) in
the disk–jet system for the reference simulation (see Equation (13)). Here, the
diffusive scale height is Hη = 0.4r .

(A color version of this figure is available in the online journal.)

As is known from the literature, an anisotropic magnetic
diffusivity is required to obtain stationary solutions (Wardle &
Königl 1993; Ferreira & Pelletier 1995; Ferreira 1997). Most
of the numerical simulations followed that approach and did
find a stationary state from their simulations as well (see, e.g.,
Zanni et al. 2007; Tzeferacos et al. 2009; Murphy et al. 2010).
Note that simulations of Casse & Keppens (2002, 2004) apply
an isotropic diffusivity and also reach a steady state.

We define an anisotropy parameter by the ratio of the toroidal
to poloidal diffusivity components, χ = ηφ,i/ηp,i. For the
diffusivity function f several options can be considered. For
the simulations in this paper, we apply

f = vA(r, z = 0)H exp

(
−2

z2

H 2
η (r)

)
, (13)

where ηp,i and ηφ,i govern the strength of magnetic diffusivity.
The Alfvén speed vA(r, z = 0) = Bz(r, z = 0)/

√
ρ(r, z = 0)

and the disk thermal scale height H (r) = cs(r, z =
0)/ΩK (r, z = 0) are both calculated along the mid-plane. The
parameter εη measures the scale height of the disk magnetic
diffusivity, similar to the hydrodynamic disk scale height pa-
rameter εη = Hη/r . For the present paper, we decided not to
evolve the diffusivity profile in time. We find that since both the
disk scale height H and the Alfvén speed vA vary as the disk
evolves, the strength of diffusivity may vary substantially from
the initially prescribed value (up to a factor 10). This highly
nonlinear feedback may disturb the progress of our simulation
such that an artificially high diffusivity may be derived which
will affect the numerical time stepping. A constant-in-time pre-
scription of diffusivity simplifies our aim of disentangling the
governing physical processes involved in jet launching.

In Paper II, presenting truly bipolar jet launching, we will
discuss further models for the magnetic diffusivity.

We stress again the importance of providing the reader with
the actual number values of the magnetic diffusivity applied.10 If
we consider a ηφ,i ∼ 1 together with a maximum Alfvén speed
in the disk of about 10−2 (located at the inner disk radius), this
gives a maximum disk diffusivity of about η(r, z)i � 0.01–0.1,
through all the simulations. Figure 3 shows the distribution of the
magnetic diffusivity. The diffusivity is mainly concentrated in

10 We remark that in previous simulations which evolve η in time, only the
initial diffusivity distribution was provided, but not its temporal evolution, and,
thus, the magnetic diffusivity distribution which is actually involved in
producing the outflow (see, e.g., Zanni et al. 2007; Tzeferacos et al. 2009;
Murphy et al. 2010). See also our numerical example below.
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Figure 4. Time evolution if the jet–disk structure for reference simulation case 1. Shown is the evolution of the mass density (color) and the poloidal magnetic field
(contours of poloidal magnetic flux Ψ for the levels 0.01, 0.03, 0.06, 0.1, 0.15, 0.2, 0.26, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.1, 1.3, 1.5, and 1.7) for the dynamical
times t = 0, 500, 1000, 2000, and 3000. The dark lines indicate the slow-magnetosonic (dashed), the Alfvén (solid), and the fast-magnetosonic (dot-dashed) surfaces
at t = 3000. The electric current lines are shown for t = 500 (green solid lines).

(A color version of this figure is available in the online journal.)

the disk, increases with disk radius (consistent with a decreasing
temperature or ionization degree with radius), and decreases
with height resembling the transition from a cool disk to an
ideal MHD outflow.

2.7. Main Simulation Parameters

The simulations are governed by a set of non-dimensional
parameters for the following physical quantities.

1. The magnetic field strength defined by plasma-β, and its
initial geometry defined by the “bending” parameter m.

2. The magnetic diffusivity, with the three parameters ηφ,i ,
ηp,i , and εη governing its strength, anisotropy, and the
diffusivity scale height.

3. The initial density contrast between disk and corona δ.
4. The initial disk thermal scale height parameter ε = H/r .

An overview of these parameters is shown in Table 1 (first
half) for the simulations presented in this paper. The second part
of Table 1 shows the main dynamical quantities resulting from
our simulations and will be discussed below. Table 2 shows
similar numbers for the simulations of different diffusive scale
heights.

3. MHD JET LAUNCHING

Before presenting detailed results of our parameter study
of jet-launching conditions, we will first discuss the general
physical processes involved considering our long-term reference
simulation (case 1). This simulation will then be compared
to simulations applying (1) different diffusivity profiles, (2) a
higher grid resolution, and (3) different magnetic field strength
(see Table 1). A similar setup will then be used to launch

Table 2
Comparison Between Different Diffusive Scale Heights

Case 1 Case 11 Case 12 Case 13

εη 0.4 0.1 0.2 0.3
Δr 0.064 0.064 0.064 0.064
Δz 0.066 0.066 0.066 0.066
ηp,i 0.03 0.03 0.03 0.03
ηφ,i 0.09 0.09 0.09 0.09
χ 3 3 3 3
β 10 10 10 10

rjet,z=180 43.8 73.3 56.4 48.4
rjet,z=60 25.01 45.8 39.2 34.4
rl 3.8 7.2 7.2 6.2
vjet,z=170 0.46 0.35 0.33 0.41
vjet,z=280 0.53 0.46 0.41 0.47

Ṁacc 0.015 0.024 0.022 0.018
Ṁejec 0.005 0.015 0.015 0.01
J̇kin 0.01 0.005 0.009 0.01
J̇mag 0.033 0.015 ± 0.01 0.02 ± 0.003 0.028

Notes. Shown are some of the physical properties mentioned in Table 1 for
different diffusive scale height runs which have been carried out up to t = 2000.

bidirectional outflows, without the constraint on hemispheric
symmetry (see Paper II).

3.1. General Evolution

Our reference simulation case 1 is carried out up to t = 5000
dynamical time, corresponding to 796 inner disk orbital periods.
It is thus one of the longest simulations considering MHD jet
launching. This huge time period corresponds, however, only to
three rotations at a radius r = 40 ri and to (only) one rotation
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at the outermost part of the disk r = 96 ri. Consequently, while
the inner part of the disk, and thus the outflow evolving from
that part, has reached a steady-state situation, the outer disk
corona is still dynamically evolving. We will therefore focus
our discussion mainly on the inner disk areas.

The time evolution of density together with the magnetic
field is shown in Figure 4. Note that we do not show field
lines integrated from certain footpoint radii, but magnetic
flux contours. This allows us to visualize the diffusion and
advection of the magnetic field as a consequence of the disk
evolution.

The magnetic diffusivity distribution determines the coupling
between the plasma and magnetic field, and, thus, affects the
mass loading into the outflow. Since the high diffusivity is in
the outer part of the disk, the coupling is weaker, and, thus, the
mass loading less efficient. As a general result we observe a
continuous and robust outflow launched from the inner part of
the disk, expanding into a collimated jet.

Figure 5 shows the poloidal velocity distribution in jet and
disk, and the normalized poloidal velocity vectors indicating the
direction of the mass fluxes.

The outflow is accelerated to superfast-magnetosonic speed
(see the magnetosonic surfaces indicated in Figure 4)

A bow shock develops at the interface between the outflow
and the surrounding hydrostatic corona. As the outflow propa-
gates, the initial corona is swept out of the computational domain
together with the bow shock. While the interaction with the am-
bient gas plays a role within the first evolutionary steps, the
long-term evolution of the outflow—its acceleration and colli-
mation—is purely determined by the force balance within the
outflow and the physical conditions of the launching region.

3.2. Disk Structure and Disk Mass Evolution

As jets are launched from disks, the disk evolution is itself
an essential part of the jet evolution and must be carefully
considered. It is expected that the jet mass flux would somewhat
correspond to the disk accretion rate (which would also depend
on the actual mass of the disk).

Our simulations show that the disk evolution is complex, with
smooth accretion phases followed by more turbulent stages.
The time evolution of the accretion stream ρvr is shown
in Figure 6. We see that accretion starts first at small radii
and fully establishes after t = 1000. Accretion shocks and
vortices may destroy the quasi-steady-state situation. Close to
the outer disk radius, mass is lost through the outer boundary.
At late evolutionary stages we see a complex pattern in the ρvr

distribution indicating small shock and turbulent motion within
the disk.

Nevertheless, the negative mass fluxes in Figure 6, together
with the negative velocity vectors in Figure 5 clearly indicate
that accretion is established throughout the whole disk.

We now discuss the time evolution of the disk mass for our
reference simulation. In order to measure the disk mass, we need
to carefully define the control volume defining a corresponding
“disk surface.” Here, we consider as disk surface the location
where the mass density at each radius falls bellow 10% of the
mid-plane density (because of the vortex motion we could not
use the negative velocity as a proxy for accretion). Measuring
the mass contained in subsequent disk rings dM/dr = 2πrρdz,
we see that most of the mass is indeed stored within the outer
disk areas (Figure 7, top). We can identify two essential factors
affecting the long-term disk evolution. First, the mass reservoir
in the outer disk has decreased, mainly due to outwards mass

Figure 5. Accretion–ejection poloidal velocity map at t = 3000 for reference
run case 1. Shown is vp distribution in logarithmic scale overlaid with arrows
of the normalized poloidal velocity vectors indicating the direction of the flow,
vp/ | vp |.
(A color version of this figure is available in the online journal.)

loss across the outer disk boundary. Second, the mass of the
inner jet-launching disk has also decreased, due to both outflow
activity and accretion into the sink.

Comparing the mass content of the disk at the initial and final
stage, we find that the total disk mass decreases from M � 520
at t = 0 to M � 320 at t = 5000 (in code units). Integrating the
mass loss by accretion and ejection into the jet (see Figure 7)
over 5000 dynamical time steps, we find a total mass loss of
M � 75. The difference, i.e., M � 125, is the mass which is
lost from the outermost disk in vertical and radial directions.

In other words, a substantial amount of the disk mass is
lost from the very outer part of the disk and does not directly
influence the jet formation. The disk mass which is lost from
the inner part is partly lost as disk wind/jet, partly accreted into
the sink and partly replenished by accretion from outer radii.

The time evolution of the disk mass gives a similar picture
(Figure 7, bottom). Integrated over the whole domain, the disk
loses about 38% of its mass until t = 5000 in the reference
simulation case 1. If we decrease the integration domain (outer
radius r = 50), the inner disk loses less mass while part of
its mass is being accreted from outer disk radii. In general this
implies that up to time t = 5000, there is still sufficient mass to
support the accretion process, but also that the disk mass shows
a considerable decrease which may have changed the internal
disk properties. Thus, for an even longer-lasting simulation one
would have to invent another mass source for the disk accretion
(e.g., by a physical mass inflow boundary condition at the outer
disk radius properly taking into account angular momentum
transfer, or a floor density distribution in the disk).

Along with the hydrodynamic disk evolution, the magnetic
field distribution evolves, subject to the competing processes of
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Figure 6. Time evolution of the accretion disk. Shown is the radial mass
flux (ρvr ) in the disk for reference run (case 1) for the dynamical times
t = 0, 1000, 3000, and 5000.

(A color version of this figure is available in the online journal.)

advection and diffusion. This also changes the launching condi-
tions, as the overall profiles of plasma-β, resp. magnetization,
are affected. Figure 8 displays the time evolution of the magnetic
flux surface Ψ = 0.1 for reference simulation case 1, initially
rooted at the radius r = 2.0. We see that this flux surface is first
moving (diffusing) outward “driven” by magnetic pressure gra-
dient and tension, and then, once disk accretion has established
again moves inward being advected with the mass flux. After
about t = 3000 both processes balance and a quasi-steady-state
situation in the system evolution is reached. Considering simply
flux conservation, we may estimate the change in poloidal mag-
netic field strength and the corresponding change in magnetic
diffusivity and plasma-β.

Estimating an average field strength B̄p and a corresponding
magnetic flux Ψ � B̄pr

2, flux conservation tells us that
Ψt=1000 ≈ ψt=50. Therefore, B̄p,t=1000 ≈ 10 Bp,t=50, since
this flux surface (e.g., Ψ = 0.1) is now rooted at a different
radius. With the increased poloidal magnetic field strength the
Alfvén speed vA ∼ Bp increases, and, thus, also the magnetic
diffusivity parameterized as η ∼ vA. Thus, we expect that in
previous work (e.g., Zanni et al. 2007; Tzeferacos et al. 2009)
the actual (time-dependent) value of the magnetic diffusivity
may differ substantially from its initial value. We believe that
this will impact the derived mass fluxes. A similar estimate can

Figure 7. Time evolution of the disk mass. Shown is the radial profile of the
mass distribution dM/dr (integrated mass per disk ring, in code units) at times
t = 0, 3000, and 5000 (top), and the time evolution of the total disk mass Md
normalized to the initial disk mass Md,i for integration radii r2 = 50 and 96
(bottom).

be made for the plasma-β or magnetization. Since β ∼ B−2, the
increase in plasma-β is by a factor 100, which is also expected
to affect the jet formation severely. We will come back to this
point later when we compare different parameter runs.

3.3. Accretion Rate and Ejection Efficiency

The main goal of this paper is to investigate what fraction
of the mass accretion is loaded into the outflow, and how the
mass loading is affected by various disk parameters. The derived
mass ejection-to-accretion ratio can be an important ingredient
for studies of AGN or YSO feedback, or another similar self-
regulating outflow scenario.

Efficient accretion is feasible only if angular momentum
is sufficiently removed. Since we do not consider physical
viscosity in our simulations, angular momentum removal from
the disk is mostly accomplished by the torque of the magnetized
disk wind. Therefore, in our simulations disk accretion can only
work if a disk wind has been established. In the following we
discuss the inflow and outflow rates in our disk–jet simulations,
concentrating first on the reference run (case 1).

In order to calculate the integrated properties of inflow
and outflow, such as mass flux or angular momentum flux,
we need to carefully select the integration domain.11 The
derived fluxes depend strongly on the choice of the integration
boundaries—thus, on how we distinguish between material

11 Averaging in time is applied for all flux evolutions.
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Figure 8. Diffusion and advection of magnetic flux. Shown is the evolution of the magnetic flux surface ψ = 0.1 for times t = 0, 50, 100, 200, 500,

1000, 3000, 4000, and 5000 (colored lines) for reference simulation case 1. This flux surface is initially rooted at (2, 0). Superimposed is the density distribution at
t = 5000.

(A color version of this figure is available in the online journal.)

Figure 9. Control volume to measure the accretion and ejection rates in the
jet–disk structure. Integration is at/between the radii r1 and r2 along the disk.
The integration surface denoted by S is inclined and is parallel to the initial disk
surface.

belonging to accretion or ejection. In reality, there is no disk
surface, but a smooth transition between accretion and ejection.
The initial setup of a thin disk with aspect ratio ε = 0.1
dynamically evolves in time, and so does the disk surface.

Our control volume to measure the disk accretion and ejection
rates is defined by an axisymmetric sector enclosed by two
surfaces perpendicular to the equatorial plane located at r = r1
and r = r2, and two other surfaces being the disk mid-plane,
and a surface s1 which is close by and parallel to the initial disk
surface (see Figure 9). We usually adopt r1 = 1.0.

The accretion rate is then calculated as

Ṁacc(r) = −2πr

∫ aH

0
ρvrdz, (14)

where the parameter a controls the scale height of the integration
and H = H (r, t = 0) = εr is the initial thermal scale height
of the disk. Considering the evolution of the large-scale disk
velocity (see Figure 6), we have chosen a = 1.6 for our reference
simulation. Similarly, we calculate the ejected mass flux as

Ṁejec(r)|S =
∫ r

r1

ρvp · d AS, (15)

where the integration is performed along the inclined surface
area S from r1 to r2 considering the area element d As.

The time evolution of the accretion and ejection rate for
the reference simulation is shown in Figure 10. We have

calculated the accretion and ejection rates for different sizes
of the integration domain (thus with different outer radius r2).
We observe that for small radii, the accretion rate saturates at
an approximately constant value. For the outer parts of the disk,
however, a longer dynamical time is required for the disk to
evolve into a new dynamical steady state. This is visible in
the time evolution of the accretion rates—for increasing radii
r2 = 3, 5, and 10, the time when the plateau phase is reached,
is increasing to t = 300, 800, and 1500. Beyond the plateau
phase, the mass fluxes slightly decrease, most probably due to
the overall decrease of the disk mass itself, and the subsequent
change in the internal disk dynamics. The accretion rates at large
radii are larger than those at smaller radii—the mass difference
is ejected as outflow. For the control volume with larger r2
the ejection rate increases, which is simply a consequence
of the increased integration area.

The last panel in Figure 10 shows the ejection-to-accretion
rate Ṁejec/Ṁacc. Again, depending on the size of the control
volume this fraction changes. Although the outflow quickly
evolves from the disk surface, and extends soon to large radii,
several orbital periods are required to establish full accretion. At
earlier times and for large radii, the accretion process is not fully
established, resulting in somewhat arbitrarily high ejection-to-
accretion ratios even above unity. For the inner part of the disk
within radii <10, about 60% of the accreting material is diverted
into the outflow for our reference simulation. This is a large
fraction and similar to simulations in the literature, but definitely
more than derived in steady-state models (Pelletier & Pudritz
1992; Ferreira & Pelletier 1995). For the other cases we have
investigated, also smaller rates were obtained (see below).

Applying a radially self-similar approximation of the MHD
equations, Ferreira & Pelletier (1995) have introduced a so-
called ejection index ξ ,

Ṁejec

Ṁacc
= 1 −

(
ri

re

)ξ

(16)

essentially resulting from local mass conservation (where ri =
r1 and re = r2 in our notation). With self-similar solutions, Fer-
reira (1997) constrained the ejection index to 0.04 < ξ < 0.08.
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Figure 10. Time evolution of the mass fluxes. Shown is evolution of accretion
rate (top), the ejection rate (middle), and the ejection-to-accretion ratio (bottom)
for the reference simulation case 1, all in code units. Colors indicate mass
fluxes calculated for increasing outer radii of the control volume, r2 =
3, 5, 10, 15, 20, and 30.

(A color version of this figure is available in the online journal.)

In comparison, for our reference run we find both larger nu-
merical values and also a wider range for the ejection index,
0.1 < ξ < 0.5. Table 1 provides an overview of the ejection
indexes we measured. We can apply our reference run to differ-
ent astrophysical sources (see Appendix A), thus for a stellar jet
with the central mass ≈1 M	 and ρi ≈ 10−10, the accretion rate
is ≈10−6 M	 yr−1. This value for AGNs with the central mass
≈108M	 and ρi ≈ 10−12 is about ≈ 7 M	 yr−1.

3.4. Launching Forces and Outflow Formation

In order to investigate the launching, the acceleration and the
collimation processes of the outflow, we now consider the forces
acting in the disk-outflow system.

Figure 11. Accelerating and collimating forces. Shown are the profiles of the
parallel (top) and perpendicular (bottom) specific forces in logarithmic scale
for simulation case 1 at time t = 1000 along the distance λ of the field
line rooted at (5,0). Here FC, FG, FL, and FP denote the centrifugal force,
gravity, the Lorentz, and the gas pressure gradient forces (all in absolute value),
respectively. The vertical lines present the slow-magnetosonic (dashed line), the
Alfvén (solid), and the fast-magnetosonic (dot-dashed) point, respectively.

(A color version of this figure is available in the online journal.)

To identify the forces for acceleration and collimation explic-
itly, it is preferable to project them along or perpendicular to a
certain flux surface, respectively. By comparing these projected
force components, we may disentangle the dominant driving and
collimation mechanism. Figure 11 shows the force components
along a flux surface (field line) rooted at (5, 0), and also the criti-
cal MHD surfaces—the slow-magnetosonic, the Alfvén, and the
fast-magnetosonic surface. The forces involved in driving the
outflow are the centrifugal force FC, the Lorentz force FL, the
gas pressure gradient FP, and gravity FG. Among them, the pres-
sure gradient and the centrifugal force are de-collimating while
gravity and Lorentz force have collimating components. The
pressure gradient, centrifugal force, and Lorentz force also con-
tribute to accelerate the outflow. In agreement with the literature,
we see that upstream of the slow-magnetosonic point, the accel-
eration is mainly by the gas pressure gradient. For the superslow
outflow, the Lorentz force and the centrifugal force dominate.
For the superfast flow, the Lorentz force plays a major role.
In the case of the collimating forces the situation is different.
Before the Alfvén point, the de-collimating centrifugal force
dominates. Beyond the Alfvén point the Lorentz force has a
comparable contribution, and finally after the fast-magnetosonic
point, the Lorentz force dominates and collimates the outflow.
The Lorentz force behavior is a sign of the electric current
distribution in the disk/jet system. It compresses the disk while
collimating the corona.

The forces involved in launching the outflow are mainly the
vertical gas pressure gradient, which counteracts the tension
forces of the poloidal field, and gravity (see Figure 11). The
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Figure 12. Launching forces of the outflow. Shown is the vertical profile of the
vertical components of gravity, the pressure gradient force, and the Lorentz force
(top), as well as the vertical profile of the net force (bottom) at time t = 1000
at a radius r = 5 for in case 1.

thermal pressure gradient is always positive, and thus supports
launching. It increases from the disk mid-plane to the surface
and then decreases in the corona. The tension term is mostly
negative, thus compressing the disk, and does not support
launching. The magnetic pressure (toroidal component and
total) are both positive above the disk, and, thus, may support
the launching process. The toroidal component of the Lorentz
force Fφ,L provides the magnetic torque braking the disk, and
loading the outflow with both angular momentum and energy
(not shown). In order to brake the disk, the torque must be
negative in the disk and change sign at the disk surface (Ferreira
1997). This is confirmed by our simulation.

Figure 12 shows for comparison the three main force compo-
nents (top) and the net force (bottom). We see that in the disk the
vertical force components almost balance, while above the disk
a considerable net force remains which launches and accelerates
the outflow. In the disk, the (positive) gas pressure is almost bal-
anced by the (negative) Lorentz force. However, the gas pressure
slightly prevails and counteracts gravity. Essentially the figure
shows that launching is a process which happens at the disk
surface. The outflow material is not lifted from the mid-plane
into the disk wind. It is the disk material accreting along the
disk surface that is loaded into the outflow. The net (specific)
force which is responsible for launching and initial acceleration
is about 10% of the value of the single force components.

3.5. Jet Radius and Opening Angle

The radius of the asymptotic jet and its opening angle can
be measured by the observations rather easily. Therefore, it
is interesting to provide a comparison from the simulations.
Simple energy conservation arguments tell us that jets with

the observed kinetic energy must originate from a disk area
very close to the central object. This is a fact which seems to
hold for all astrophysical jet sources. We will later consider the
question of how these asymptotic properties are related to the
conditions of the jet-launching process. Here, we first provide
a clear numerical definition of these properties and apply them
to our reference simulation. In order to make a quantitative
comparison, we need to define a “radius of the outflow.” We
suggest a definition of an axial mass-flux-weighted jet radius,
measured at a certain distance z = zm from the source (see also
Porth & Fendt 2010),

rjet|zm =
[ ∫ rm

0 rρvzdr
]
zm[ ∫ rm

0 ρvzdr
]
zm

. (17)

This radius measures the bulk of the mass flux contained in
the jet at a specific distance zm from the mid-plane. In order
to derive the jet-launching area, we now adopt that flux surface
which follows the bulk of the mass flux, thus passing through the
point (rjet(zm), zm), and trace the same flux surface back to the
disk surface where it is rooted. This footpoint radius defines
the launching area of the outflow. For reference run case 1, we
find a mass-flux-weighted asymptotic jet radius for the high-
velocity component of rjet � 44 at zm = 180, corresponding
to �4 AU for a protostellar scaling applying ri = 0.1 AU.
For the jet-launching radius, we measure rl ∼ 0.4 AU in our
reference run. Similarly, the launching area for the extended
low-velocity component of the DG Tauri wind was measured
by Anderson et al. (2003) as extending from ∼0.3 to 4 AU
from the star. They invented a method relying on the MHD
energy and angular momentum conservation along the jet. By
comparing the observed kinetic energy and jet rotation they
inferred the necessary disk rotation and launching area in the
wind-launching region.

The asymptotic jet opening angle is the other jet charac-
teristic. One way to measure the jet opening angle is by the
inclination angle of the flux surface defined by the asymptotic
jet radius as discussed above. Another measure of the collima-
tion was suggested by Fendt (2006) who assigned an average
collimation degree ζ of the outflow by comparing the vertical
and radial mass fluxes in the outflow (applying a proper nor-
malization per surface area of a cylinder of height z = zm and
radius r = rm),

ζjet = 2
zm

rm

[ ∫ rm

0 rρvzdr
]
zm[ ∫ zm

0 rmρvrdz
]
rm

, (18)

where only positive poloidal velocities are considered. Outflow
collimation would simply imply that ζjet > 1. For our reference
run, we find ζjet = 2.37 implying that about twice as much
mass is propagating along the jet axis than away from the
jet axis. For comparison, the flux surface which encloses the
bulk of the jet mass flux has an (half) opening angle of about
10◦ at (r, z) = (44, 180), but collimates slightly more further
downstream. We note that this definition is related also to the
concentration of mass flux across the jet, and, thus, provides
somewhat different information than the opening angle of the
field lines. For example, a cylindrical jet with zero degree
opening angle may have a narrow or a broad radial density
or mass flux profile. With our definition the narrow mass flux
would be interpreted as more collimated.
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4. COMPARISON OF PARAMETER RUNS

In this section we compare simulations governed by different
input parameters which rely on a magnetic diffusivity profile
following Equation (13) with a scale height of the disk diffu-
sivity Hη = εηr , grid resolution Δr, Δz, maximum magnetic
poloidal and toroidal diffusivity ηp,i and ηφ,i, the diffusivity
anisotropy χ , and the plasma-beta parameter β (see Table 1).
We understand these parameters as the governing parameters of
jet launching from accretion disks. All simulations have been
carried out up to t = 3000 (reference run up to t = 5000). We
found that this time is sufficient to reach a quasi-steady state of
accretion–ejection (roughly after t = 1000).

We first show a comparison of the global mass density distri-
bution at t = 3000 for simulation setups resulting from a differ-
ent strength η or different anisotropy χ of diffusivity, a different
plasma-β, or a different grid resolution (Figure 13). The im-
mediate result is that both the disk structure and the dynamical
evolution of the outflow, change substantially compared to the
reference run (case 1). Jet-like outflows have been formed in all
cases, although in some cases like case 6 with β = 5000, or case
9 with β = 250, the outflow appears highly filamentary. Denser
outflows are observed as in case 7 with higher resolution, or case
2 with lower diffusivity, or case 5 with lower toroidal diffusivity,
while in other cases the outflow is more tenuous. Outflow and
disk evolution are interrelated—a denser outflow thus implies a
geometrically thinner accretion disk, as more of the accreting
matter has been diverted into the outflow. The smoothness of the
outflow varies for the different setups. We obtain a much more
filamentary and perturbed structure for outflows for which the
(physical or numerical) diffusivity in the disk is lower. A similar
statement can be made for a low magnetic field strength.

We now consider the main properties of the accretion–ejection
system in a quasi-steady state for all simulation runs. The two
most prominent physical quantities are the mass and the angular
momentum fluxes. Similar to the mass fluxes defined in Equa-
tions (14) and (15) we integrate the ejection torque that is the
torque exerted on the disk by the outflow applying the same
control volume (see Section 3.3),

J̇kin =
∫ r

r1

rρvφvp · d As, J̇mag = −
∫ r

r1

rBφ

4π
Bp · d As (19)

with the kinetic and magnetic angular momentum flux, J̇kin and
J̇mag, carried by the outflow. Figure 14 shows the time evolution
of the accretion rate (top) and the ejection rate (bottom) for the
different cases. The accretion rate is calculated for radius r =
10 for all cases.12 For comparison, we show the corresponding
vertical angular momentum flux evolution (Figure 15). For all
cases investigated, accretion sets in after several hundreds of
rotations and is fully established within t � 1000. After some
initial fluctuations, the accretion rate levels off into a steady
state, depending on the physical parameters prescribed in the
simulation.

Depending on the efficiency of the angular momentum
transfer from the disk, the disk establishes a different accretion
rate. We find that the simulation runs with the highest accretion
rates, also have the highest angular momentum flux from the
disk (Figures 14 and 15). These are the case 2 runs with rather
low diffusivity and case 5 with rather low poloidal diffusivity,
strongly indicating that with a low diffusivity and, thus, a strong

12 For high plasma-β (cases 9 and 10), the mass fluxes evolution looks
strongly fluctuating and is therefore omitted.

coupling between field and matter, the MHD torque of the
jet on the disk is most efficient, and subsequently leads to a
more efficient disk accretion. Similarly, the high plasma-β (thus
with a low field strength, simulations runs (cases 6, 8, 9, and
10)) exhibit a weak magnetic angular momentum removal and,
consequently, are inefficient accretors (see Table 1). In summary,
we find that the extraction of angular momentum from the disk
by the outflow and accretion are clearly interrelated.

In the following sections, we discuss how the governing
system parameters, such as diffusivity, plasma-β, and numerical
resolution, affect the mass flux evolution.

4.1. Possible Impact of Numerical Diffusivity

Before we further investigate the physical effects, we discuss
the results of our resolution study. Numerical diffusivity will add
to the physical diffusivity, as it is a natural consequence of the
finite-difference scheme applied in the PLUTO code. This effect
could be particularly important in the jet-launching regime close
to the disk surface where strong gradients in density, pressure,
or magnetic diffusivity exist, and which may not be resolved.
Murphy et al. (2010) have claimed that jet launching could be
in fact present just due to numerical diffusivity.

In order to estimate the impact of numerical diffusivity we
have repeated our reference simulation case 1 with a three times
higher resolution (case 7), but with the same physical diffusivity
and anisotropy parameter as for the reference simulation. We
find that the leading disk and outflow properties are similar
to the reference case. The accretion rate is slightly decreased
from Ṁacc = 0.015 (case 1) to Ṁacc = 0.013 (case 7), while
the ejection rate is slightly increased from Ṁejec = 0.008 to
Ṁejec = 0.009 (see Table 1). Due to the smaller computational
domain for the high-resolution simulation, we cannot compare
the asymptotic jet radii (at z = 180); however, we can compare
the radius of the bulk mass flux similar to Equation (17) for lower
altitudes (at z = 60). The simulation with higher resolution
seems to result in a slightly more collimated jet, with a jet radius
of rjet = 19.6 compared to rjet = 25 for the reference simulation.
This results in a similarly smaller jet-launching radius. The
maximum jet velocities are just the same vjet = 0.5.

Figure 14 shows the time evolution of the mass fluxes. We
see that the accretion rates and ejection rates for case 1 and
case 7 saturate at the same level. It appears that the high-
resolution simulation needs more time to establish an outflow,
while the accretion evolves similarly in both runs. One may
see indication for a slightly larger accretion rate for the low-
resolution run, which would fit into the picture that the disk
material can more easily diffuse across the field lines due to the
numerical diffusivity.

The same picture holds for the angular momentum fluxes (see
Figure 15), which are very similar for the kinematic part and
slightly offset for the magnetic part.

4.2. Impact of the Magnetic Field Strength

There is a common agreement in the literature that jet for-
mation requires a certain amount of magnetic flux to be present
in the jet-launching regime. On the other hand, the maximum
magnetic flux which can be supported by the accretion disk is
limited by the disk equipartition field strength (we will neglect
the question of the origin of the magnetic field in this paper).

We have also studied the impact of the magnetic field strength
on jet launching, governed by the plasma-β parameter. We note
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Figure 13. Comparison of different parameters runs (see Table 1) at t = 3000. Shown is the density distribution and the poloidal magnetic field (contours of magnetic
flux for levels Ψ = 0.01, 0.03, 0.06, 0.1, 0.15, 0.2, 0.26, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.1, 1.3, 1.5, and 1.7) for simulation runs with rather low diffusivity
(case 2), rather high poloidal diffusivity with anisotropy χ = 3/5 (case 3), rather high diffusivity strength (case 4), rather low toroidal diffusivity with anisotropy
χ = 1/3 (case 5), simulations with a rather weak magnetic field with plasma-β = 5000 (case 6), plasma-β = 100 (case 8), plasma-β = 250 (case 9), and also a
simulation with three times higher resolution (case 7), all to be compared to our reference simulation case 1, see Figure 4.

(A color version of this figure is available in the online journal.)

that we start all simulations with the same magnetic field profile;
however, due to diffusion and advection in the disk, the field
distribution may change substantially.

The magnetic field strength determines the amount of mag-
netic energy which is available for jet acceleration and is
directly interrelated with the length of the lever arm of

the magnetic torque on the disk (e.g., Pelletier & Pudritz
1992).

Due to the larger magnetic torque in case of a strong field, the
disk angular momentum could be removed more efficiently. In
order to investigate these effects quantitatively, we will compare
simulations with different plasma-β, such as case 1 with initial
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Figure 14. Comparison of mass fluxes for the different cases. Shown is the time
evolution of the accretion–ejection rate (top) and the ejection rate (bottom) for
simulation runs applying a different parameter setup (see Table 1).

(A color version of this figure is available in the online journal.)

β = 10, case 8 with β = 50, case 9 with β = 250, and
the weak field case 6 with β = 5000. Note that the plasma-
β is, however, a space- and time-dependent function of the
simulation, β = β(r, z, t) and not only a single parameter we
prescribe initially at the inner disk radius. In the high plasma-β
regime, the flow of matter controls the dynamical structure of
the system. For all cases of a weak magnetic field, the disk–jet
system evolution seems highly perturbed—visible in the global
structure of the outflow (Figure 13, cases 6, 8, and 9).

Note that the regimes with high plasma-β are known to be
dominated by the internal, turbulent torque, which is not taken
into account in our simulations by an α-viscosity.

In particular, for cases 9 and 10, the mass flux evolution is
exceptionally perturbed (so we decided not to include them in
all plots and just show the magnetic angular momentum flux).
Figure 15 proves that with increasing plasma-β, less angular
momentum is removed from the disk, and, subsequently, the
accretion rate is reduced. This is particularly visible when we
compare the simulation with β = 50 with the reference run with
β = 10. In the case of the weakest magnetic field, thus for the
simulations with β = 250 and β = 5000, the magnetic angular
momentum removal is close to negligible. For the weak field
cases, the accretion rate decreases, and in cases 9, 10, and 6
no efficient accretion is observed. In summary, we confirm the
hypothesis that efficient magnetocentrifugal jet driving requires
a strong magnetic flux (i.e., a low plasma-β), together with a
large enough magnetic torque in order to produce a powerful jet.

Simulation case 6 applies a very weak magnetic field with β =
5000. Figure 16 compares the two simulations: case 6 with the
standard setup case 7 in high resolution. No smoothly structured
outflow is obtained for case 6, but a highly turbulent outflow

Figure 15. Comparison of angular momentum fluxes for the different cases.
Shown is the time evolution of the vertical angular momentum flux from the
disk, calculated for a control volume with r1 = 1.0 and r2 = 10.0 (see Table 1).

(A color version of this figure is available in the online journal.)

with non-negligible outflow speed and mass flux. Due to the
weak poloidal field, the outflow in case 6 is super-Alfvénic right
from the launching point, thus magnetocentrifugal acceleration
cannot play a role. Interestingly, the size of the turbulent features
increases with distance from the origin. Also the poloidal
magnetic field is highly tangled (Figure 13). The mass flux
we measure for case 6 is about Ṁejec � 0.001 with outflow
velocities of vjet � 0.4. While the velocities are comparable
to case 7 (or case 1 with lower resolution), the ejected mass
flux is substantially lower (factor two). Accretion in case 6 is
weak (the smallest of all simulations), consistent with the low
angular momentum losses (the smallest of all simulations). The
accretion rate is even smaller than the ejection rate (factor five),
and we may call such a disk an ejection disk instead of an
accretion disk.

The question is: what is launching and accelerating such a
turbulent, high plasma-β outflow? Our interpretation is that
the initial acceleration to superescape speed is by the toroidal
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Figure 16. Comparison of outflow launching for low and high plasma-β cases.
Display of the Alfvénic Mach number for two simulations with three times
higher resolution. The left panel shows the weak field case β = 5000 (case 6).
The right panel shows the strong field case β = 10 (case 7).

(A color version of this figure is available in the online journal.)

magnetic pressure gradient (induced by the differential rotation
between the rotating disk and the static corona). When the bow
shock has left the domain, this acceleration process decays, and
the remaining outflow acceleration is due to weak Lorentz force
(as we are in the super-Alfvénic regime). The vertical mass flux
for case 6 (very weak field) is one order of magnitude below the
mass flux in case 7 (with strong field β = 10), measured at the
same altitude (see Table 1). In summary, launching conditions
as in case 6 with β = 5000 do not produce a strong jet flow, but
a light disk wind of superescape speed.

We point out that the physical regime of acceleration does
not only depend on the field strength, but also on the mass
flux. Magnetocentrifugal effects are more evident for outflows
with low-mass flux, while in heavy jets the magnetic pressure
gradient may play a substantial role (see, e.g., Anderson et al.
2005).

The relative field strength (measured by the plasma-β) is
a function of space and evolves in time. The initial field and
gas pressure distribution, denoted by the βi, is changed by
the dynamical evolution including advection and diffusion of
the disk magnetic field. Figure 17 shows the evolution of the
plasma-β for case 1. It is clearly visible that the plasma-β
along the disk surface changes substantially. The inner disk (for
r < 15) reaches a steady state with a β somewhat higher than
the initial value. Later, around t = 3000 when the disk mass
decreases, the gas pressure decreases as well, resulting in a lower
plasma-β in the disk corona. The disk corona therefore remains
sufficiently magnetized and can support a fast jet. In case 1 the
magnetic field structure reaches a steady state balanced by field
diffusion advection.

In simulation case 7 with the same parameter setup but a
higher resolution, a steady state is reached as well. However,
even for late time steps the magnetic flux continues to diffuse
outward. This is somewhat surprising since the numerical
diffusion is smaller and cannot be the reason (Figure 18,

Figure 17. Time evolution of the plasma-β in the inner disk–jet system.
Snapshots of the plasma-β distribution (in logarithmic scale) for case 1 at
t = 0, 1000, and 3000.

(A color version of this figure is available in the online journal.)

top). For case 8 with the higher initial plasma-β, advection
seems to dominate outward diffusion of flux. The poloidal
field distribution reaches a steady state with a magnetic flux
concentration close to the inner edge of the disk (Figure 18,
bottom). Thus, this setup seems favorable for jet launching as
well, although the initial plasma-β was high.

As an extreme example, for simulation case 9 with the initial
β = 250 the plasma-β is considerably changed during the disk
evolution. Case 9 shows very weak accretion (see the discussion
above), so outward diffusion of magnetic flux dominates advec-
tion. Outward diffusion of flux implies a decrease of magnetic
field strength. As a result the disk magnetization decreases and
the plasma-β reaches number values above 105. Therefore, this
disk is not able to launch strong jets. So far no steady state is
achieved.

The interrelation between the magnetic field strength and out-
flow launching has been discussed by other authors (Tzeferacos
et al. 2009; Murphy et al. 2010), indicating that regions with
weak field are not able to generate an outflow, and that both the
collimation degree and the ejection rate increase with stronger
field. Murphy et al. (2010) have concluded that jet launching for
cases of weak magnetization may be artificially supported by
numerical diffusivity within the disk surface layer, which should
heat the gas, producing additional gas pressure. They suggest
that ejection is possible as the magnetization reaches unity at
the disk surface due to the steep density decrease. No ejection is
reported when the mid-plane magnetization becomes too small.
Nevertheless, the asymptotic jet velocity remained too low to
explain the observed jet’s speed. From our simulations, we find
that even for weak magnetization in the disk the disk corona
is sufficiently magnetized for jet launching and, depending on
the efficiency of mass loading, fast jets could be driven (for
comparison, see Figure 17 for case 1). The mass loading
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Figure 18. Advection and diffusion of magnetic flux over time. Shown is the evolution of the magnetic flux surface Ψ = 0.1 rooted initially at (r, z) = (2, 0), for
case 7 (high resolution) and case 8 (β = 50). Colors show the density distribution at t = 3000 (logarithmic scale).

(A color version of this figure is available in the online journal.)

depends on resistivity, and we will discuss this aspect in the
next section.

We finally consider the possibility to observe the MRI in
our simulations. This is interesting since we are dealing with
magnetic fields of various strength in combination with a
differentially rotating system. To generate the MRI in numerical
simulations, two conditions are essential—a large enough (but
not too large) plasma-β in the disk as to initiate instability,
and also a grid of high enough resolution in order to avoid
damping of small wavelengths. The wavelength of the most
unstable MRI mode is given by λMRI = 2πvA,z/ΩK for a
Keplerian rotation ΩK (see, e.g., Romanova et al. 2011). When
we calculate this wavelength for a simulation with β = 10,
we obtain λMRI � 0.057, implying that we cannot resolve the
MRI with our setup as the grid size is about half of the MRI
wavelength.

We point out that the magnetic diffusivity applied in our
simulations also contributes to suppressing the generation of
MRI turbulence.

4.3. Magnetic Diffusivity Strength and Anisotropy

The strength and anisotropy of the magnetic diffusivity—
controlled by the coefficients ηφ,i, ηp,i, and χ (see Table 1)—are
essential parameters governing the coupling between the mag-
netic field and the plasma. Efficient magnetocentrifugal driving
requires strong coupling between the magnetic field and the
rotating disk material, thus a rather low diffusivity. A similar
argument holds for the launching by magnetic pressure gradi-
ent. On the other hand, mass loading from accretion to ejection

requires a certain degree of diffusivity in order to transport mass
across the field lines.

So far, no general model for the magnetic diffusivity distri-
bution in disk–jet structures is available. In many simulations
considering magnetocentrifugal-driven outflows, the outflow is
governed by ideal MHD, while the diffusivity is confined to
the disk. In order to investigate the impact of diffusivity on
jet launching, we have therefore performed simulations with
varying strength of the diffusivity components ηφ,i and ηp,i.

We first compare simulations with the same anisotropy
parameter χ = 3 as reference run case 1. In general, the strength
of magnetic diffusivity governs the disk accretion rate. Our
reference run case 1 reaches a quasi-steady state, establishing
a balance between inward advection and outward diffusion of
magnetic flux. This happens after t = 1000 and is disturbed
again in the late stages of the dynamical evolution, most
probably as a result of the change in the overall disk dynamics
due to the decreasing disk mass. A change in diffusivity will
also affect this balance. We now compare case 4 with higher
and case 2 with lower diffusivity. In the less diffusive case,
advection dominates and we obtain a higher accretion rate. We
find that not only the accretion rate, but also the ejection rates
are higher for disks with lower diffusivity. This trend is shown
in Figure 19, where we display the accretion rate and also the
ejection rate as a function of the poloidal diffusivity.

Two physical processes affect the disk dynamics—advection
and diffusion. In a less diffusive disk, the plasma is stronger
coupled to the field and advection of magnetic flux dominates.
Consequently, the magnetic flux surfaces are located further in
the inner part of the disk, “rotate” faster, and a stronger Bφ

17



The Astrophysical Journal, 757:65 (23pp), 2012 September 20 Sheikhnezami et al.

Figure 19. Mass flux Ṁejec vs. poloidal diffusivity. Shown is the ejected jet
mass flux (triangles) and the accretion rate (circles) as function of the poloidal
diffusivity for simulations with the same magnetic field strength, i.e., case 1
(ηp,i = 0.03), case 2 (ηp,i = 0.01), case 3 (ηp,i = 0.15), case 4 (ηp,i = 0.09),
and case 5 (ηp,i = 0.03).

is induced. The stronger toroidal field may lead to a stronger
acceleration of the outflow, by stronger Lorentz forces (either
magnetic tension of pressure forces). In addition, by comparing
the vertical profiles of net launching forces at t = 1000 for a
less diffusive disk (case 2), and reference run (case 1), we find
a larger net force in case 2 by which implies that more disk
material can be lifted into the outflow.

This is exactly what we observe in the mass fluxes—the
ejected mass flux in case 2 is two times the ejected mass flux in
case 1. Note that a stronger Bφ will impose stronger pinching
forces ∼(Bφ · ∇)Bφ on the disk and the ejected material, thus
opposing the loading process (as the toroidal tension has a com-
ponent along the field line decelerating the outflow meterial).
However, the magnetic pressure gradient of the toroidal field
∼∇B2

φ has an outward directed component along the field line,
thus supporting ejection. By comparing the vertical profiles of
both terms for the two cases with β = 10 and β = 50, we find
that (1) the toroidal magnetic field pressure gradient component
along the field line is always dominating the pinching force of
the toroidal field along the field line, and that (2) for higher
plasma-β the (∇B2

φ)z is larger than for the lower plasma-β case.
Thus, in our simulations the toroidal field is supporting ejection.

In summary, although a certain magnitude of diffusivity is
required for mass loading, the lower diffusivity allows for
enhanced mass loading of accreting material into the outflow.
Consequently, less diffusive disks tend to have higher ejection
rates. This result is in agreement with the previous literature
(Zanni et al. 2007).

Our simulations confirm that the strength of magnetic diffu-
sivity does affect the asymptotic speed of the outflow. Figure 20
shows the typical jet velocity versus the poloidal diffusivity.
Comparing different simulation runs (see Table 1), we find that
the outflow from the less diffusive disk (case 2) remains slower,
while the outflows formed from more diffusive disks (cases 3
and 4) are accelerated to higher speed. For case 2 with three
times lower magnetic diffusivity, the asymptotic speed is re-
duced by ≈30%, while for case 4 with three times higher mag-
netic diffusivity the increase is about ≈30% (see Table 1). This
is reasonable from a physical point of view, since in a weakly
diffusive disk more material is diverted into the outflow. Thus,
with the same amount of magnetic flux available, correspond-
ingly less magnetic energy could be transferred per outflow mass
unit. The more massive outflows are only accelerated to lower
speed if launched with similar magnetization. Alternatively, a

Figure 20. Jet velocity vs. poloidal diffusivity at t = 3000. Shown is the typical
jet velocity as a function of (but different) diffusivity, i.e., case 1 (ηp,i = 0.03),
case 2 (ηp,i = 0.01), case 3 (ηp,i = 0.15), case 4 (ηp,i = 0.09), and case 5
(ηp,i = 0.03).

higher magnetic diffusivity, resulting in a weaker mass load,
leads to a faster outflow.

When comparing our results with the previous literature,
one should keep in mind that we have applied a mass flux
weighted velocity which we consider as the typical velocity of
the bulk mass flux. The velocity value is generally lower than
the maximum speed we measure in the outflow and which is
mostly given in the literature. While the typical speed ranges
from about 0.5 to 0.9 (in code units), the maximum speed in the
outflow ranges from 1.2 to 1.8 inner disk Keplerian velocities
and is comparable to other results in the literature. Furthermore,
we have detected a slight time evolution in the velocity (see also
the mass flux evolution shown in Figure 14). In our reference run
case 1, the maximum asymptotic speed varies from vp,max = 1.8
at t = 500 to vp,max = 1.2 for t > 1000. For comparison, Zanni
et al. (2007) and Tzeferacos et al. (2009) give a maximum speed
of vp,max � 1.5–4.5 at t = 400.

Next, we investigate a possible impact of anisotropy in the
diffusivity tensor, parameterized by χ . We compare case 1 and
case 5 with the same polodial diffusivity ηp = 0.03, but with
case 5 having a lower diffusivity in the toroidal direction. By
comparing their leading properties (see Table 1), we find them
to have quite similar properties. In particular, for both cases
(with the same poloidal diffusivity) the ejection rates are also
similar. However, case 5 with less toroidal diffusivity has a
higher accretion rate.

Anisotropy of magnetic diffusivity also impacts the rotation of
the outflow. It is believed that jets are rotating and the rotation is
basically driven by the underlying disk rotation and the coupling
between matter and field (Bacciotti et al. 2002; Anderson et al.
2003; Coffey et al. 2004; Fendt 2011). For a high toroidal
diffusivity, the coupling is weak, and thus the acceleration in
toroidal direction is also weak. With our simulations we can
confirm this concept. Figure 21 shows the rotational velocity for
the lower part of the jet. The outflow resulting from simulation
case 1 with a nine times higher toroidal diffusivity shows a 50%
lower rotation rate than for case 5. Similarly, the outflows in
simulation case 4 with a three times higher toroidal diffusivity
shows a 50% lower rotation rate than case 3.13

We observe a close correlation between the accretion rate
Ṁacc and angular momentum flux (J̇kin + J̇mag) from the disk.

13 We cannot compare cases 1 and 4 or 5 and 4 directly, as, due to their
different poloidal diffusivity, these outflows have different mass fluxes.
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Figure 21. Outflow rotation and toroidal magnetic diffusivity. Shown is the rotational velocity vφ of the inner disk–jet system at t = 3000 for simulation runs with
different toroidal magnetic diffusivity, respectively, different anisotropy parameters χ , i.e., cases 1, 5, 3, and 4 (from left to right).

(A color version of this figure is available in the online journal.)

Figure 22. Collimation degree and jet radius vs. poloidal diffusivity. Shown
is the collimation degree ζ (filled triangles) and the mass-flux-weighted jet
radius rjet (filled circles) over the poloidal diffusivity for simulations with the
same magnetic field strength, but different diffusivity, i.e., case 1 (ηp,i = 0.03),
case 2 (ηp,i = 0.01), case 3 (ηp,i = 0.15), case 4 (ηp,i = 0.09), and case 5
(ηp,i = 0.03).

In a system with higher angular momentum removal, a higher
accretion rate is observed (Figure 15), with the accretion rate in
case 5 being larger than for case 1, and for case 1 larger than for
case 3. This confirms the common belief that in order to obtain
higher accretion rates, a more efficient angular momentum
removal is required.

To discuss the interrelation between collimation and diffu-
sivity, we again apply a collimation degree by comparing the
directed mass fluxes (see Equation (18)). As a general result we
find that outflows launched from disks of higher poloidal diffu-
sivity ηp are more collimated. This interrelation is displayed in
Figure 22.

We see that case 2 with the magnetic diffusivity of ηp,i =
0.01—maybe below a critical value—evolves differently from
the others and has both a very low degree of collimation and
an exceptionally large mass-flux-weighted jet radius. The inner
part of this outflow appears rather hollow (Figure 13).

The comparison of the (mass flux weighted) jet radii for
these runs provide a similar picture. We find an interrelation
such that for increasing magnetic diffusivity the jet radius de-
creases,14 such that rjet(case 3) � rjet(case 4) < rjet(case 5) <
rjet(case 1) < rjet(case 2).

4.4. Scale Height of Magnetic Diffusivity

We have argued above that the disk material which is launched
to form an outflow is likely to be turbulent, so we may expect a

14 For simulations with higher resolution (case 6 and case 7), we adopt a
smaller physical grid size with rout = 50, so we cannot compare the jet radius
properly.

magnetically diffusive disk wind above the disk surface. Thus,
since mass loading requires poloidal magnetic diffusivity, the
jet-launching area can be extended into higher altitudes above
the disk surface. Furthermore, the jet-launching area is extended
into a domain where the plasma-β is comparatively low. Taking
into account both effects, one may therefore expect (1) to
launch jets from disks which would themselves be insufficiently
magnetized for jet driving, and also (2) to launch outflows
which have a rather low-mass flux and subsequently higher
terminal velocity. In order to investigate these effects, we have
therefore prescribed different height scales Hη for the magnetic
diffusivity in our simulations (see Equation (13)). The physical
properties measured for different diffusive scale heights are
shown in Table 2. In general, we find different stages in the
temporal evolution of the mass flux (accretion and ejection)
in the disk–jet system (Figure 23). For small diffusive scale
heights Hη, a turbulent pattern and perturbations appear in
the outflow resulting in a more filamentary outflow. It seems
that these perturbations have larger amplitudes in case of a
smaller diffusive scale height. The amplitudes decrease when the
diffusive scale height decreases. For εη = 0.4 they are damped
completely. We believe that these perturbations are generated
by a physical process within the launching region and that they
are simply smoothed out by the magnetic diffusivity. A further
study is needed to clarify this issue.

For increasing scale height the accretion rate and ejection rate
decrease, confirming the correlation derived above between the
increasing magnitude of diffusivity and decreasing mass fluxes.
In other words, an increasing diffusivity scale height simply
corresponds to a higher diffusivity with the consequences as
discussed above. Interestingly, all our simulations for different
diffusivity scale heights converge to the same kinetic angular
momentum flux in the outflow. On the other hand, we find
a trend of decreasing magnetic angular momentum flux with
decreasing diffusivity scale height.

5. COMPARISON WITH PREVIOUS
NUMERICAL STUDIES

In this section we highlight some of our results, discussing
them in the context of numerical studies published previously.
Our main goal was to perform a consistent parameter study to
investigate a variety of physical effects involved in jet launching
by using one code with one numerical setup. Only this allows us
to disentangle the leading effects involved in jet launching with-
out the uncertainty introduced by interpreting results obtained
with different codes (VAC, PLUTO, and FLASH) or setups.

We first stress the point that we apply a well defined, fixed-in-
time magnetic diffusivity distribution. The magnetic diffusivity
is a leading parameter which influences the whole disk–jet
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Figure 23. Effect of the magnetic diffusivity scale height. Shown is the evolution of the accretion and ejection rate Ṁkin, Ṁmag (top), and the evolution of the kinetic
and magnetic angular momentum flux J̇kin, J̇mag (bottom), for simulations applying a different diffusive scale height Hη = 0.1 (solid line), 0.2 (dotted line), 0.3
(dashed line), and 0.4 (dot-dashed line).

evolution (Zanni et al. 2007). Previous simulations (Casse &
Keppens 2002; Zanni et al. 2007; Tzeferacos et al. 2009; Murphy
et al. 2010) have applied a diffusivity evolving in time. This
might be considered as more advanced; however, these authors
do not provide details about time evolution of the diffusivity,
thus introducing some level of uncertainty. Here, we have
demonstrated how diffusion and advection of magnetic flux does
change the disk Alfvén speed (and thus the magnetic diffusivity
if a time-dependent η(t) ∼ vA(t) is applied) by a factor of
10. On the other hand, by applying different strength and scale
height for the diffusivity we investigate the interrelation between
magnetic diffusivity and the accretion and ejection mass fluxes.

Similarly, we provide information about the spatiotempo-
ral evolution of the magnetization (or plasma-β in our case).
Tzeferacos et al. (2009) have published a magnetization study,
but on a smaller grid and for substantially shorter dynamical
evolution. In our paper, we show in particular how the magne-
tization profile flares over thousands of dynamical timescales
(Figure 17). Thus, along with the evolving outflow, the magne-
tization above the disk surface is substantially lower compared
to the initial condition.

We obtain jet velocities which seem to be smaller compared
to previously published values. For example, Zanni et al. (2007)
detect asymptotic velocities of 1.5–1.8 times the footpoint
Keplerian speed for the field lines crossing the upper boundary.
Simulations of jet formation from a fixed-in-time disk surface
boundary (see, e.g., Ouyed & Pudritz 1997; Fendt & Čemeljić
2002) give similar values. In contrast, we report lower velocities
of about 0.8 times the Keplerian speed at the inner disk radius.
Note, however, that our values result from a differently defined
measure of the jet velocity. We suggest that this mass-flux

weighted asymptotic speed—the average velocity of the bulk
mass flux—is more applicable to observations. The maximum
jet velocities we observe in our simulations are higher and also
up to 1.8 times the Keplerian speed at the inner disk radius,
which is consistent with previous studies. We explicitly consider
the jet rotation in our simulations, a topic which has not been
treated in previous launching simulations.

We quantify the jet collimation degree by the directed mass
fluxes. For the jet opening angle we find somewhat larger values
than in previous studies. We suppose that this results from the
modified outflow condition we have applied as we have seen that
the original outflow condition lead to smaller opening angles.

We have run long-lasting simulations of up to 5000 dynamical
timescales ti = ri/vK,i. This allows us to reach a quasi-steady-
state situation of the simulation, but also to investigate the
evolution beyond. We find a slight but persistent change in
the inflow–outflow dynamics on these very long timescales,
such that the accretion rate slightly decreases. The main reason
for this we see in the decrease of the disk mass for such
long timescales. However, the effect has a direct astrophysical
application as it may be applied to the long-term evolution of
classical T Tauri stars when the disk accretion in fact weakens
after some 106 years. Clearly, our simulation covers a much
smaller period of time, namely, about 25 years only (for the
scaling applied in this paper). However, we may mimic the
long-term evolution by providing a limited-mass reservoir only.
We note that previous simulations were substantially shorter,
lasting until 400 dynamical time steps ti = ri/vK,i (Zanni et al.
2007; Tzeferacos et al. 2009) or 30 inner disk rotations (Casse
& Keppens 2004; Meliani et al. 2006). An exception is the
simulation by Murphy et al. (2010) lasting for more than 900
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inner disk orbits. That paper focuses, however, on the launching
physics and does not show the large-scale evolution of the
outflow.

Together with the long-time evolution, we have also have
applied a large grid size. Compared to Tzeferacos et al. (2009)
who investigated how magnetization affects launching by using
a 40 × 120 ri grid, our grid was about double the size. Murphy
et al. (2010) concentrated on the launching process of weakly
magnetized disks and displayed only results on 40×40 ri images
(which are a subset of a 280 × 840 ri). For YSO, our grid
extension corresponds to about 28 AU along the jet, well into the
observable region. We note that we have applied an equidistant
grid for the magnetically diffusive disk area which is consistent
with the PLUTO code requirements. This is different to Murphy
et al. (2010) who attached a scaled grid for the diffusive outer
disk.

6. CONCLUSIONS

We have presented results of MHD simulations investigating
the launching of jets and outflows from a magnetically diffusive
disk in Keplerian rotation. The time evolution of the accretion
disk structure is self-consistently taken into account. The simu-
lations are performed in axisymmetry applying the MHD code
PLUTO. The main goal of our simulations was to study how
magnetic diffusivity (its magnitude and distribution) and mag-
netization affect the disk and outflow properties, such as mass
and angular momentum fluxes, jet collimation, or jet radius.

Our grids extend to (96 × 288) inner disk radii with a
resolution of (0.064 × 0.066), respectively (50 × 180) inner
disk radii with a higher resolution of (0.025 × 0.025). An
internal boundary (sink) is placed close to the origin absorbing
the accreted mass and angular momentum.

We have prescribed a magnetic diffusivity in the disk based
on an α-prescription. One of our parameters was the scale height
of the magnetic diffusivity with the option to have it higher than
the thermal scale height. This can be justified considering that
it is the turbulent disk material which is loaded into the outflow,
and that the turbulence pattern is swept along with the disk wind
until it decays. We have investigated disks carrying a magnetic
flux corresponding to an initial plasma-β ranging from 10 to
5000 at the inner disk radius.

As a general result we observe a continuous and robust
outflow launched from the inner part of the disk, expanding into
a collimated jet and is accelerated to superfast-magnetosonic
speed. The key results of our simulations can be summarized as
follows.

1. Concerning the acceleration of the outflows, our simu-
lations confirm that the magnetocentrifugal acceleration
mechanism is most efficient in the low plasma-β regime,
while for weak magnetic fields the toroidal magnetic pres-
sure gradient drives the ejected material.

We also confirm that the magnetocentrifugal mechanism
depends on the mass load in the outflow, as this mechanism
works more efficiently for outflows with low-mass fluxes.
However, compared to the magnetic-pressure-driven out-
flows, jets in the magnetocentrifugal acceleration regime
have usually higher mass fluxes.

In our simulations with very high plasma-β we detect a
highly unsteady behavior.

2. Efficient magnetocentrifugal driving which can accelerate
jets to high kinetic energy relies on a strong coupling
between magnetic field and the rotating disk, thus on a

low diffusivity. We find that it is the poloidal diffusivity ηp
which mainly affects the driving of the outflow. However,
besides the coupling needed for acceleration, the launching
of material also depends on diffusivity. With increasing ηp,
the mass fluxes (both the accretion rate and the ejection rate)
decrease. Subsequently, the higher ejection rates result in a
lower asymptotic outflow velocities.

3. We measure typical outflow velocities in the range of
0.3–0.8 times the inner disk rotational velocity with the
tendency that the mass fluxes obtained in magnetocentrifu-
gally driven outflow are substantially higher. Here, we con-
firm the clear (inverse) correlation between jet velocity and
mass load, as is well known from the literature. Note that
we have applied a mass-flux-weighted jet velocity which
we find more applicable to the observations. For the bulk
mass flux we find lower velocities compared to other pa-
pers, which are mostly dealing with the maximum speed
obtained in the simulation. Our maximum velocities are
similar. The relatively high speed of the outflows with low
Poynting flux which are driven by poloidal pressure gradi-
ent is unclear.

We find that the toroidal diffusivity affects the outflow
rotation—a small toroidal diffusivity implies a larger jet
rotational velocity. This has not been shown before in
simulations.

4. We do not find a clear correlation between the outflow col-
limation and the magnetic field strength. Also weakly mag-
netized outflows, which are driven by the magnetic pressure
gradient, and which we find to be quite unsteady, show a
high degree of collimation. The question of collimation for
the weakly magnetized outflows is not answered.

We find that for outflows within the magnetocentrifugal-
driving regime, the flows ejected from weakly diffusive
disks are only weakly collimated. Similarly, their jet radius
(here defined as mass-flux-weighted radius) is larger in the
case of a lower poloidal magnetic diffusivity.

Following the magnetic flux surface along the bulk mass
flux from the asymptotic regime to the launching area, we
can define the launching area of the outflow. We find a size
of the launching area from which the bulk of the mass flux
originates in the range between 3 and 8 inner disk radii or
about 0.4 AU.

5. Depending on the strength of magnetic diffusivity, the
disk–jet structure may evolve into a steady state. We find
that the cases with the strong field with βi ∼ 10 and
poloidal diffusivity ηp,i � 0.03 will reach a quasi-steady
state, confirming the literature.

6. The magnetic flux profile along the disk is subject to
advection and diffusion. We find that the magnetization (or
plasma-β) of disk and outflow may therefore substantially
change during the time evolution. We have observed that the
initial disk magnetization may change by a factor of 100.
This may have a severe impact on the launching process and
the formation of the outflow in the sense that a rather highly
magnetized disk may evolve into a weakly magnetized disk
which cannot drive strong outflows. This issue has not been
discussed before in the literature.

7. For very long timescales the accretion disk changes its
internal dynamics, as due to outflow ejection and disk
accretion the disk mass decreases. As a consequence, the
accretion and ejection rates slightly decrease. In order to
compensate for this effect, we have applied a large outer
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disk radius providing a large-mass reservoir for the inner
jet-launching disk.

8. For our simulations, we find that 10%–50% of the accret-
ing plasma can be diverted into the outflow. For (1) less
diffusive disks, (2) a strong magnetic field, (3) a low
poloidal diffusivity, or (4) a lower numerical diffusiv-
ity (resolution), the mass loading into the outflow is in-
creased—resulting in more massive jets. We interpret the
physical reason for this to be the result of the more efficient
extraction of angular momentum from the disk, due to the
stronger matter–field coupling. Note that we do not con-
sider in our simulations viscosity or the wealth of thermal
effects which play an essential role for launching (Casse &
Ferreira 2000).

9. We found that jets launched in a setup with smaller diffusive
scale height are more perturbed. The same effect is seen in
outflows launched from disks with weaker diffusivity.

10. We finally remark that it is essential to perform long-
term simulations covering thousands of rotational pe-
riods in order to find a steady-state situation of the
accretion–ejection dynamics. Our simulations run for 5000
dynamical timesteps, corresponding to about 800 revolu-
tions at the inner disk radius as adopted in our reference
run. We should, however, note that this run time corre-
sponds to only 25 years of young stellar evolution for a
solar mass star and an inner disk radius of 0.1 AU. How-
ever, our simulations allow us to mimic nature such that we
can follow a slight trend in the disk–jet evolution due to the
limited-mass reservoir.

In summary, we confirm the hypothesis that efficient magne-
tocentrifugal jet driving requires a strong magnetic flux (i.e., a
low plasma-β), together with a large enough magnetic torque
in order to produce a powerful jet. In addition, the magnitude
of (turbulent) magnetic diffusivity plays the major role in the
ejection efficiency, while the anisotropy in the diffusivity mainly
affects the jet rotation. Both results imply that the structure of
the asymptotic jet is indeed governed by the properties of the
accretion disk, here parameterized by the magnetization and
magnetic diffusivity. The mass ejection-to-accretion ratio along
with the momentum and energy transfer rates from inflow to
outflow are essential properties for any feedback mechanism
in star or galaxy formation scenarios and can only be derived
from simulations resolving the inner region of the jet-launching
accretion disk.
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the presentation of the paper. S.S. acknowledges the warm
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Planck Institute for Astronomy. This work was financed partly
by a scholarship of the Ministry of Science, Research, and
Technology of Iran, and by the SFB 881 of the German science
foundation DFG.

APPENDIX A

UNITS AND NORMALIZATION

We normalize all variables, namely, r, ρ, v, and B to their
fiducial values at the inner disk radius. We have adopted the
following typical number values for a YSO of M = 1 M	
and an AGN of M = 108 M	. A change in one of the system

parameters accordingly changes the scaling of our simulation
results which can thus be applied for a variety of jet sources.
The inner disk radius ri is usually assumed to be a few radii of
the central object,

ri = 0.028 AU

(
ri

3 RYSO

)(
RYSO

2 R	

)
(YSO)

= 10−4 pc

(
ri

10 RS

)(
M

108 M	

)
(AGN), (A1)

where RS = 2GM/c2 is the Schwarzschild radius of the central
black hole. The inner disk radius is usually assumed to be
located at the marginally stable orbit at 3 RS. Since we apply
the non-relativistic version of the PLUTO code, we cannot
treat any relativistic effects. We therefore apply a scaling of
ri � 10 RS. For simplicity and convenient comparison with the
previous literature we apply ri = 0.1 AU for most comparisons
concerning stellar sources. The orbital velocity at the inner disk
radius is

vk,i = 180 km s−1

(
M

M	

)1/2 (
ri

3 RYSO

)−1/2

×
(

RYSO

2 R	

)−1/2

(YSO)

= 6.7 × 104 km s−1

(
ri

10Rs

)−1/2

×
(

M

108 M	

)−1/2

(AGN). (A2)

For a ri = 0.1 AU distance from a YSO, the orbital speed is
vk,i = 94 km s−1. The mass accretion rate is a parameter which
is in principle accessible by observation. Subject to the disk
model applied, the observed disk luminosity can be related to
an accretion rate. For a YSO, the accretion rate is typically of
the order of Ṁacc � 10−7 M	 yr−1, providing a normalization
of the density ρi with Ṁi = r2

i ρivK,i. Applying a length scale
ri = 0.1 AU and a velocity scale vk,i = 94 km s−1, we obtain

Ṁi = 10−5 M	 yr−1

(
ρi

10−10 g cm−3

)(
M

M	

)1/2

×
( ri

0.1 AU

)3/2
(YSO)

= 10 M	 yr−1

(
ρ0

10−12 g cm−3

)(
M

108 M	

)1/2

(AGN).

(A3)

Normalized value of the magnetic field is obtained by consid-
ering the plasma-β and the field strength at the equator at the
inner radius Bi = √

8πPi/βi,

Bi = 14.9

(
βi

10

)−1/2 ( ε

0.1

) (
ρ0

10−10 g cm−3

)1/2 (
M

M	

)1/2

×
( ri

0.1 AU

)−5/4
G (YSO) (A4)

= 1.06 × 103

(
βi

10

)−1/2 ( ε

0.1

) (
ρ0

10−12 g cm−3

)1/2

×
(

ri

10 RS

)−5/4

G (AGN). (A5)
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APPENDIX B

A MODIFIED RADIAL OUTFLOW
BOUNDARY CONDITION

An essential point of our setup is to impose an outflow bound-
ary at the outer part of the domain in the r-direction avoiding
artificial collimation. We have implemented a current-free out-
flow boundary condition which prevents spurious collimation
by Lorentz forces and which has been thoroughly tested in
our previous papers (Porth & Fendt 2010; Porth et al. 2011;
Vaidya et al. 2011). The boundary condition considers a van-
ishing toroidal electric current density in the ghost cells. There-
fore, the Lorentz force component perpendicular to the grid
boundary vanishes. The boundary constraints are applied on the
poloidal and toroidal component of the electric current density,
jr = −∂zBφ , jz = r−1∂rrBφ , and jφ = ∂zBr − ∂rBz, respec-
tively.

In principle, this is considered for the grid ghost cells (iend, j )
adjunct to the domain boundary at (iend + 1, j ) (see the Section
3.1.1 in Porth & Fendt 2010). The transverse Bt(iend, j + 1/2)
and normal Bn(iend +1/2, j ), Bn(iend +1/2, j +1) magnetic field
components in the domain, together with the transverse field
component Bt (iend +1, j +1/2) of the first ghost zone, constitute
a toroidal corner-centered electric current Iφ(iend +1/2, j +1/2).
With that a constraint for a current-free Iφ = 0 boundary
condition can been implemented numerically,

Bt|iend+1,j+1/2 = Bt|iend,j+1/2

+
Δr

Δz
[Bn|iend+1/2,j+1 − Bn|iend+1/2,j ]. (B1)
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