Articles

FIRST RESULTS FROM Pan-STARRS1: FAINT, HIGH PROPER MOTION WHITE DWARFS IN THE MEDIUM-DEEP FIELDS

, , , , , , , , , , , , , , , and

Published 2011 December 28 © 2012. The American Astronomical Society. All rights reserved.
, , Citation J. L. Tonry et al 2012 ApJ 745 42 DOI 10.1088/0004-637X/745/1/42

0004-637X/745/1/42

ABSTRACT

The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands (Pan-STARRS1 gP1, rP1, iP1, zP1, and yP1) on 12 "Medium-Deep fields," each of which spans a 3fdg3 circle. For the period between 2009 April and 2011 April these fields were observed 50–200 times. Using a reduced proper motion diagram, we have extracted a list of 47 white dwarf (WD) candidates whose Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6σ level, with a typical 1σ proper motion uncertainty of 10 mas yr−1. We also used astrometry from the Sloan Digital Sky Survey (when available) and USNO-B to assess our proper motion fits. None of the WD candidates exhibits evidence of statistically significant parallaxes, with a typical 1σ uncertainty of 8 mas. Twelve of these candidates are known WDs, including the high proper motion (1farcs7 yr−1) WD LHS 291. We confirm seven more objects as WDs through optical spectroscopy. Based on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170 K <Teff < 5000 K and cooling ages ≈ 8 Gyr. Based on their kinematics, these objects are likely thick disk WDs, but a subset may belong to the halo. Our current sample represents only a small fraction of the Pan-STARRS1 data. With continued coverage from the Medium-Deep Field Survey and the 3π survey, Pan-STARRS1 should find many more high proper motion WDs that are part of the old thick disk and halo.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

The oldest white dwarfs (WDs) in the Galactic disk and halo provide independent age measurements for their parent populations (Winget et al. 1987; Liebert et al. 1988). The major observational requirement for accurate age measurements is to have a large sample of cool, old WDs. However, the intrinsic faintness of the coolest WDs make them difficult to observe, and the previous studies of the Galactic disk and halo suffer from small samples of cool WDs.

The most commonly used sample of cool WDs in the Galactic disk includes 43 stars and gives an age of 8 ± 1.5 Gyr (Leggett et al. 1998). Kilic et al. (2006, 2010), Harris et al. (2006), and Rowell & Hambly (2011) significantly improved the disk WD sample based on the SDSS + USNO-B (Munn et al. 2004) or SuperCOSMOS proper motions. However, the ≈19.7 mag limit of the Palomar Observatory Sky Survey and the Schmidt plates do not allow the identification of many faint thick disk and halo WDs. In order to overcome the magnitude limit imposed by the plate astrometry, Liebert et al. (2007) initiated a large proper motion survey down to r = 21 mag. Kilic et al. (2010) identify several halo WD candidates in that survey and demonstrate that deep, wide-field proper motion surveys ought to find many halo WDs.

Classification of a WD as a halo object solely based on large proper motions can be misleading. Oppenheimer et al. (2001) identified 38 WDs as halo objects based on SuperCOSMOS proper motions and colors. However, these claims were later rejected by kinematic and detailed model atmosphere analysis. Reid et al. (2001) demonstrated that the Oppenheimer et al. (2001) sample is more consistent with the high-velocity tail of the thick disk component. In addition, Bergeron (2003) finds that these WDs are too warm and too young to be members of the Galactic halo. Bergeron et al. (2005) emphasize the importance of determining total stellar ages in order to associate any WD with thick disk or halo. Currently, there are only a handful of probable field halo WDs known: WD 0346+246 (Hambly et al. 1997), SDSS J1102+4113 (Hall et al. 2008), J2137+1050, and J2145+1106 with Teff ≈ 3800 K (Kilic et al. 2010).

Deep, wide-field surveys like Pan-STARRS1 provide the best opportunity to identify significant numbers of thick disk and halo WDs. The combination of astrometry from the Sloan Digital Sky Survey (SDSS) and the Pan-STARRS1 3π survey can be used to identify high proper motion targets in the >10,000 deg2 overlap area. Better yet, the combination of depth (complete to rP1 ∼ 24.5), temporal coverage (50–200 epochs over two years), colors (five bands ranging from 400 nm to 1.1 μm), and photometric and astrometric precision over the 80 deg2 spanned by the Pan-STARRS1 Medium-Deep (MD) fields is an excellent data set for discovering faint WD stars.

Here, we present a suite of 47 candidate WDs selected from a combination of proper motion and colors from the Pan-STARRS1 (PS1) Medium-Deep Survey (MDS). The remainder of the introduction summarizes the Pan-STARRS1 survey system. The observations we used are described in Section 2. Data processing is outlined in Section 3, and results are shown in Section 4, followed by our conclusions in Section 5.

1.1. The Pan-STARRS1 Telescope and the Gigapixel Imager

The Pan-STARRS1 system is a high-etendue wide-field imaging system, designed for dedicated survey observations. The system is installed on the peak of Haleakala on the island of Maui in the Hawaiian island chain. Routine observations are conducted remotely from the Maikalani Advanced Technology Center. We provide below a terse summary of the Pan-STARRS1 survey instrumentation. A more complete description of the Pan-STARRS1 system, both hardware and software, is provided by Kaiser et al. (2010). The survey philosophy and execution strategy are described in K. C. Chambers et al. (2011, in preparation).

The Pan-STARRS1 optical train (Hodapp et al. 2004) uses a 1.8 m diameter f/4.4 primary mirror and a 0.9 m secondary. The resulting converging beam then passes through two refractive correctors, an interference filter with a clear aperture diameter of 496 mm and a final refractive corrector that is the dewar window.

The Pan-STARRS1 imager (Tonry et al. 2008) comprises a total of sixty 4800 × 4800 pixel detectors, with 10 μm pixels that subtend 0farcs258. The diameter of the field illuminated by the optical system is 3fdg3. The detectors are back-illuminated CCDs manufactured by Lincoln Laboratory. The detectors are read out using a StarGrasp CCD controller (Onaka et al. 2008), with a readout time of 7 s for a full unbinned image.

The Pan-STARRS1 passbands are designated as gP1, rP1, iP1, zP1, and yP1 in order to clearly distinguish PS1 from other photometric systems. Photometry in the PS1 system is on the AB magnitude system (Fukugita et al. 1996).

Images obtained by the Pan-STARRS1 system are processed through the Image Processing Pipeline (IPP), on a computer cluster at the Maui High Performance Computer Center. The pipeline runs the images through a succession of stages, including flat fielding ("de-trending"), a flux-conserving warping to a sky-based image plane, masking and artifact removal, and object detection and photometry (Magnier 2006). The IPP also performs image subtraction to allow for the prompt detection of variables and transient phenomena. For the results presented here, the flat-fielded and warped Medium-Deep images were processed through a custom stacking and calibration process, as described in Section 3. Each night's data are collected with eight dithers, permitting an outlier rejection strategy that removes artifacts such as cosmic rays or satellite streaks.

1.2. The Pan-STARRS1 Photometric System

The Pan-STARRS1 observations are obtained through a set of five broadband filters, which we have designated as gP1, rP1, iP1, zP1, and yP1. Under certain circumstances Pan-STARRS1 observations are obtained with a sixth, "wide" filter designated as wP1 that essentially spans gP1, rP1, and iP1. Although the filter system for Pan-STARRS1 has much in common with that used in previous surveys, such as SDSS (York et al. 2000), there are important differences. The gP1 filter extends 20 nm redward of gSDSS, paying the price of 5577 Å sky emission for greater sensitivity and lower systematics for photometric redshifts, and the zP1 filter is cut off at 930 nm, giving it a different response than the detector response defined zSDSS. SDSS has no corresponding yP1 filter. We stress that, like SDSS, Pan-STARRS1 uses the AB photometric system and there is no arbitrariness in the definition, only in how accurately we know the bandpasses.

The details of the photometric calibration and the Pan-STARRS1 zero-point scale will be presented in a subsequent publication (J. L. Tonry et al. 2011, in preparation), and E. Magnier et al. (2011, in preparation) will provide the application to a consistent photometric catalog over the 3/4 sky observed by Pan-STARRS1. We briefly describe the methodology used for the photometry presented in this paper.

We have carried out extensive, in situ measurements of the full transmission of the Pan-STARRS1 system (Stubbs et al. 2010), as well as knowing the filter, lens, and mirror characteristics from the vendor's measurements, and we have found these to be consistent. Provisional response functions (including 1.2 airmasses of atmosphere) are available at the project's Web site.6

Integrating the Pan-STARRS1, SDSS, and Johnson/Kron-Cousins bandpasses against spectrophotometry of 273 stars with a wide range of temperature and surface gravity gives us a means of transforming SDSS or J/KC colors to the Pan-STARRS1 system for the stellar locus. Table 1 relates the Pan-STARRS1 color to a corresponding SDSS color: CP1 = A + B × CSDSS, valid over a certain range in CSDSS. Since both systems are AB the constant A is negligible, and the relative redness of gP1 and blueness of zP1 relative to SDSS are reflected in B < 1. The term for yP1 is purely a stellar locus extrapolation off of the SDSS system and should be used with caution, particularly for hot stars with Paschen absorption.

Table 1. Pan-STARRS1–SDSS Stellar Color Transformations

Cp1 CSDSS A B rms Color Range
(gr)P1 (gr)SDSS −0.016 0.865 0.012 −0.6 to 1.6
(ri)P1 (ri)SDSS −0.002 1.018 0.004 −0.5 to 1.0
(iz)P1 (iz)SDSS +0.001 0.837 0.008 −0.5 to 1.2
(zy)P1 (iz)SDSS −0.004 0.400 0.022 −0.2 to 1.2

Notes. The columns contain the Pan-STARRS1 color, the SDSS color, the offset A (mag), the color coefficient B, the rms scatter (mag) between the synthetic spectrophotometry in the Pan-STARRS1 system and the color-transformed SDSS-band synthetic photometry, for the 273 sources used, and the color range (SDSS) (mag) over which this rms holds.

Download table as:  ASCIITypeset image

While the catalog of E. Magnier et al. (2011, in preparation) will use PS1 as a photometric instrument to link observations to fundamental standards such as helium WD observed by Hubble Space Telescope (supplanting standards such as Vega and BD+17 4708), the photometry presented here is based on SDSS DR7. Each Medium-Deep field observation in a filter is brought into relative calibration with every other observation, and then overlap with SDSS stars whose magnitudes have been transformed into the Pan-STARRS1 system provides a single zero point for all. We finally use the stellar locus of Covey et al. (2007) transformed to the Pan-STARRS1 system to provide cross-filter zero-point tweaks and create the most consistent colors possible. The procedure is described in detail below, but it is essential to emphasize that the photometry here is on the Pan-STARRS1 system, not on the SDSS system, although SDSS is the basis for zero points and colors. Like SDSS, the Pan-STARRS1 photometry includes 1.2 airmasses of atmospheric attenuation as a factor in the bandpasses, although the magnitudes are corrected to the top of the atmosphere. No correction is made for galactic extinction.

2. OBSERVATIONS

In addition to covering the entire sky at δ > −30°, the Pan-STARRS1 survey has obtained multi-epoch images in the gP1, rP1, iP1, zP1, and yP1 bands of the fields listed in Table 2, the Medium-Deep fields. MD00 is a field centered on M31 with a filter choice and cadence designed to detect microlensing. This paper uses only the images and photometry from the 1635 Pan-STARRS1 Medium-Deep Field Survey observations acquired between 2009 April and 2011 April. There are some 350 observations that missed IPP processing in time for inclusion.

Table 2. Pan-STARRS1 Medium-Deep Field Centers

Field R.A. (J2000) Decl. (J2000)
MD00 10.675 41.267
MD01 35.875 −4.250
MD02 53.100 −27.800
MD03 130.592 44.317
MD04 150.000 2.200
MD05 161.917 58.083
MD06 185.000 47.117
MD07 213.704 53.083
MD08 242.787 54.950
MD09 334.188 0.283
MD10 352.312 −0.433
MD11 270.000 66.561

Download table as:  ASCIITypeset image

Observations of the Medium-Deep fields occur each night, cycling through the various Pan-STARRS1 filters, during that portion of the year that the fields are accessible at less than 1.3 airmasses. A nightly "observation" in a given filter consists of eight dithered "exposures," with a typical cadence as shown in Table 3. Our basic units of observation are these "nightly stacks" and the "stack–stack" of all nightly stacks, although there is information available on the timescales of individual exposures, and for other programs we assemble custom stacks of nightly stacks.

Table 3. Pan-STARRS1 Medium-Deep Survey, Typical Cadence

Night Filter Exposure Time
1 gP1and rP1 8 × 113 s each
2 iP1 8 × 240 s
3 zP1 8 × 240 s
Repeats... ... ...
FM ± 3 yP1 8 × 240 s

Notes. Observations taken three nights on either side of full moon are done only in the yP1 band.

Download table as:  ASCIITypeset image

Table 4 provides basic information about each field and filter, including the number of nightly stacks available, the total exposure time, the point-spread function (PSF) FWHM calculated by DoPhot on the stack–stack, the median PSF of the various nightly stacks estimated by IPP, and the 5σ limiting magnitude for point sources. This limiting magnitude was calculated by creating two stacks from interleaved halves of all the nightly stacks, comparing DoPhot photometry between them, estimating the magnitude where the rms difference is 0.2 mag, and from that deriving the magnitude where the sum would have rms uncertainty 0.2 mag. We can relate this limiting magnitude to the rms magnitude per 0farcs2 pixel of the background and the PSF FWHM, w, (in arcsec). This rms background in turn for each filter depends on the exposure time, t, and a constant that folds together the mean system throughput, sky background, and extinction:

Equation (1)

Equation (2)

where the sequence in parentheses corresponds to gP1, rP1, iP1, zP1, yP1. The core-skirt nature of the PSF in the stack–stack (discussed in more detail below) implies that these 5σ limits degrade slowly for larger apertures (e.g., for galaxy photometry).

Table 4. Pan-STARRS1 MDF Statistics, 2009 April–2011 April

Field Filter N log t PSF w mlim Field Filter N log t PSF w mlim
MD01 gP1 42 4.7 1.25 1.55 24.5 MD06 gP1 38 4.6 1.25 1.56 24.4
MD01 rP1 42 4.7 1.15 1.35 24.4 MD06 rP1 39 4.6 1.18 1.45 24.2
MD01 iP1 41 4.9 1.05 1.27 24.4 MD06 iP1 41 4.9 1.14 1.39 24.3
MD01 zP1 41 4.9 1.03 1.24 23.9 MD06 zP1 38 4.9 1.05 1.30 23.7
MD01 yP1 21 4.6 0.95 1.17 22.4 MD06 yP1 24 4.7 1.00 1.25 22.4
MD02 gP1 30 4.5 1.31 1.79 24.2 MD07 gP1 36 4.5 1.23 1.68 24.3
MD02 rP1 29 4.5 1.20 1.74 24.1 MD07 rP1 39 4.5 1.13 1.46 24.2
MD02 iP1 30 4.8 1.11 1.50 24.2 MD07 iP1 39 4.9 1.14 1.44 24.2
MD02 zP1 33 4.8 1.06 1.30 23.6 MD07 zP1 43 4.9 1.08 1.37 23.7
MD02 yP1 16 4.5 1.14 1.42 22.1 MD07 yP1 30 4.8 1.01 1.28 22.5
MD03 gP1 38 4.6 1.18 1.44 24.5 MD08 gP1 38 4.5 1.27 1.68 24.3
MD03 rP1 37 4.6 1.09 1.28 24.4 MD08 rP1 38 4.5 1.14 1.47 24.2
MD03 iP1 41 4.9 1.06 1.31 24.4 MD08 iP1 33 4.8 1.07 1.34 24.2
MD03 zP1 42 5.0 1.03 1.27 23.9 MD08 zP1 40 4.9 1.09 1.39 23.7
MD03 yP1 20 4.6 1.00 1.36 22.4 MD08 yP1 32 4.9 0.98 1.27 22.7
MD04 gP1 35 4.6 1.17 1.52 24.5 MD09 gP1 34 4.5 1.26 1.55 24.3
MD04 rP1 37 4.6 1.09 1.46 24.3 MD09 rP1 33 4.5 1.15 1.42 24.1
MD04 iP1 35 4.9 1.07 1.35 24.3 MD09 iP1 34 4.8 1.02 1.36 24.3
MD04 zP1 28 4.8 1.03 1.32 23.6 MD09 zP1 34 4.8 1.02 1.26 23.7
MD04 yP1 8 4.3 1.03 1.21 22.0 MD09 yP1 12 4.3 0.94 1.12 22.0
MD05 gP1 42 4.6 1.24 1.58 24.4 MD10 gP1 30 4.5 1.26 1.60 24.2
MD05 rP1 40 4.6 1.17 1.46 24.3 MD10 rP1 33 4.5 1.18 1.53 24.2
MD05 iP1 34 4.8 1.06 1.44 24.3 MD10 iP1 30 4.8 1.01 1.31 24.2
MD05 zP1 27 4.8 0.99 1.27 23.6 MD10 zP1 28 4.8 1.03 1.24 23.6
MD05 yP1 17 4.6 1.02 1.33 22.3 MD10 yP1 11 4.4 0.96 1.22 22.2
MD11 gP1 1 3.0 1.17 1.45 22.4 MD00 gP1 0 ... ... ... ...
MD11 rP1 1 3.0 1.12 1.30 22.3 MD00 rP1 101 4.9 1.03 1.30 24.8
MD11 iP1 3 3.8 1.13 1.47 22.9 MD00 iP1 66 4.6 0.96 1.25 24.0
MD11 zP1 4 3.9 1.34 1.81 22.2 MD00 zP1 0 ... ... ... ...
MD11 yP1 5 4.0 0.96 1.21 21.6 MD00 yP1 0 ... ... ... ...

Notes. N is the number of nights of observation, log t is the log10 of the net exposure time in seconds, "PSF" is the DoPhot FWHM of the core-skirt PSF in the stack–stacks (in arcsec), 〈w〉 is the median IPP FWHM of the observations (in arcsec), and mlim is the 5σ detection limit for point sources.

Download table as:  ASCIITypeset image

3. DATA PROCESSING

3.1. Individual Image Processing

The Pan-STARRS1 IPP system performs flat fielding on each of the images, using white light flat-field images from a dome screen, in combination with an illumination correction obtained by rastering sources across the field of view. Bad pixel masks are applied and carried forward for use in the stacking stage. After determining an initial astrometric solution, the flat-fielded images are then warped onto a tangent plane of the sky, using a flux conserving algorithm. The plate scale for the warped images is 0.200 arcsec pixel−1. The IPP removes the sky level from the images, but at this point makes no attempt to provide a consistent flux scale. Images obtained through clouds are included in the processing chain. We adjust the flux scale of each image at the level of a Pan-STARRS1 "skycell," which subtends 20 arcmin on the sky. There is no evidence for residual spatial structure in the attenuation from clouds in the resulting Medium-Deep field nightly stacks, each combining eight images of integration time over 100 s.

3.2. Exposure Combination into Stacks

The images obtained from a single night in each band were typically obtained with small dithers in boresight and at a diversity of rotator angles. The stack of eight images per band per night were then assembled into a "nightly stack," using a variance-weighted combination of individual frames, with outlier rejection. These nightly stacked images are considered to be that night's image in the appropriate band. This stacking process successfully suppresses cosmic ray artifacts, masking losses, and any sources that move a distance larger than the PSF during the ∼30 minute observation interval.

Nightly stacks are combined into "stack–stacks" by weighting each by inverse variance times inverse PSF area. We find that this is nearly optimal for point-source detection. In principle we might do slightly better by convolution with PSF, but in practice the covariance between warped pixels is such as to make the improvement negligible. The resulting PSF of this stack–stack has a relatively sharp core and substantial skirt, of course, but we do not attempt to deconvolve the skirt into a more compact PSF, even though it would be a relatively robust operation. Instead, we always strive to match PSF models to the data or include skirt deconvolution as part of the normal kernel convolution required when image subtracting the stack–stack from a nightly stack.

3.3. Photometric and Astrometric Calibration

In the interim, before the Pan-STARRS1 photometric catalog of the sky is released, we must resort to a somewhat involved procedure to bring all observations to a common and accurate zero point. In brief, these steps are applied to each set of observations of each Medium-Deep field, every 20 arcmin skycell of each field (about 70 per field) and each filter which are the following.

  • 1.  
    Obtain instrumental magnitudes (fluxes) and positions for all stars in all nightly stacks using DoPhot (Schechter et al. 1993).
  • 2.  
    By comparing the stellar attributes between all N(N−1)/2 pairs of observations, obtain photometric and astrometric offsets for each skycell of each nightly stack (with indeterminate zero point). All instrumental magnitudes are corrected to an aperture magnitude within a 6 arcsec box.
  • 3.  
    Combine all nightly stacks into a stack–stack using inverse variance times inverse PSF area weighting.
  • 4.  
    Obtain instrumental magnitudes for all stars in each stack–stack.
  • 5.  
    Assemble a weighted combination of three estimates of photometric zero point by comparing (1) SDSS stars converted to the Pan-STARRS1 system (or its extension to MD01 and MD02 using relative photometry from Pan-STARRS), (2) zP1 derived from Two Micron All Sky Survey (2MASS) magnitudes and stellar locus conversions, and (3) skycell-to-skycell relative zero points founded on the flattening performed by the IPP with the instrumental magnitudes of the stack–stack.
  • 6.  
    Create an "object catalog" from the union over all filters for each skycell; perform forced-position photometry on each stack–stack for each object in the catalog.
  • 7.  
    Compare four colors for all stellar objects in five filters with the standard colors of the stellar locus. This is derived by removing (small for MDS) Schlegel–Finkbeiner–Davis (SFD; Schlegel et al. 1998) extinction from each object and matching to the stellar locus (Covey et al. 2007), shifted to the Pan-STARRS1 system. Apply these (very small) offsets to the zero points of each filter, assuming zero median. This corrects (High et al. 2009) for small residual effects in color–color space, such as atmospheric extinction variations or small color terms between skycells.

This has the following features.

  • 1.  
    All nightly stacks and stack–stacks should have very consistent photometry, limited by DoPhot's ability to match the PSF and the size of the aperture box.
  • 2.  
    Use of the flattening constraint should prevent skycell to skycell jumps in zero point.
  • 3.  
    The skycell by skycell tie to a standard stellar locus should make colors more accurate than absolute zero points.
  • 4.  
    The absolute astrometry is founded on the 2MASS coordinate system that IPP currently uses to create the warps, but does remove small offsets (typically less than ∼50 mas) between nightly stacks that have occurred as IPP evolves. This ensures that the relative astrometry for proper motions is as accurate as we can currently make it.

Although this will eventually be superseded by the Pan-STARRS1 photometric and astrometric system, we believe that this procedure has satisfactory accuracy for our purposes.

Figure 1 shows the stellar locus of 500,000 stars from the ten Medium-Deep fields. The width of the locus in (ri)P1 at (gr)P1 = 0.6 is 0.04 mag, consistent with the estimated uncertainties in the photometry added in quadrature to 0.02 mag and constraining any failure to bring skycells and Medium-Deep field photometry into color agreement to ∼0.02 mag.

Figure 1.

Figure 1. Pan-STARRS1 Medium-Deep field stellar locus of 500,000 stars in ten MDFs. The 47 Pan-STARRS1 WD candidates are shown as square, red points. The blue extension of the stellar locus (∼1800 stars shown in blue) are likely hot WD stars, but luminosity inferred from proper motion is a prerequisite to identify cool WDs that overlap the stellar locus.

Standard image High-resolution image

3.4. Proper Motion Determination

There are some ten million objects in the ten MD fields for which we have 50–200 observations, spread over two years and the five filters. We have searched these for evidence of proper motion. The rms astrometric residuals for sufficiently bright objects (photometric precision of <0.05 mag) is 25–40 mas, per observation. For each object we assemble all the detections and fit the positions for a proper motion. Objects with rP1 < 22 typically yield an answer with uncertainty of ∼10 mas yr−1; fainter objects can be measured with correspondingly greater uncertainty. For brighter objects we can find SDSS or even USNO-B counterparts, but many are too faint.

There are some 60,000 objects that appear to have a 3σ proper motion in these two year data, and we further cut this by demanding a 6σ proper motion significance. We found that even this list was contaminated by occasional patches where the MD images apparently have astrometric errors, so we also augment the skycell alignment described above by a local astrometric bias correction. This consists of finding all objects within 0fdg03 of each candidate proper motion whose astrometric precision is greater than 1.5σ (typically ∼40 objects), assembling a median motion and quartile-derived rms, subtracting this median motion from the candidate proper motion, and adding the uncertainty in quadrature to the uncertainty of the candidate's. This has the effect of reducing the systematic error although increasing the uncertainty and decreasing the number that still meet the 6σ criterion. There are about 1000 objects that fulfill this bias-corrected, 6σ cut.

We regard this "bias correction" as a temporary expedient that permits us to begin to search for WDs, but we recognize that our proper motions are relative to stars that have non-zero motion themselves, as well as significantly diminishing the astrometric accuracy. There are a number of improvements we anticipate in the near future.

  • 1.  
    Once Pan-STARRS1 moves to its own astrometric system instead of 2MASS, the need for this skycell adjustment and local bias correction should disappear, and we should see significantly tighter residuals for bright enough objects.
  • 2.  
    To date we have worked only with nightly stacks, but of course it is possible to combine observations to achieve better astrometric precision for faint objects at the expense of fewer epochs.
  • 3.  
    The present Pan-STARRS1 mission is slated to continue for at least two more years, doubling or tripling the temporal baseline (there were far fewer observations in 2009 than in 2010).

Although the colors of the majority of the ten million objects lie off of the stellar locus, these 1000 objects (and 60,000 3σ objects) lie gratifyingly close to the stellar locus; extremely few galaxies leak past the proper motion filter.

Comparisons with the SIMBAD database of known proper motions show excellent agreement for those objects faint enough not to be saturated for Pan-STARRS1 and bright enough to appear in SIMBAD. At rP1 ∼ 15 only the poor seeing Pan-STARRS1 observations are unsaturated. Pan-STARRS1 achieves its best accuracy for objects in the range of 17 < rP1 < 21, and without nightly stack combination Pan-STARRS1 loses accuracy to photon statistics fainter than rP1 > 22.

3.5. Parallax Fits

Joint fits for parallax and proper motion over the baseline of Pan-STARRS1 observations did not turn up any highly significant parallax: the median uncertainty is 10 mas and the median parallax is 4 mas. There were three detections of parallax at 2.5σ at 13, 27, and 29 mas, but the covariance with proper motion makes these very insecure measurements. (Of course there are many stars in the MD fields closer than 30 pc, but they are all too bright and saturated.) We anticipate much better performance when we have the Pan-STARRS1 astrometric grid, perhaps uncertainties as small as 3 mas for bright objects with 17 < rP1 < 21. Of course, the extended time baseline over the course of the Pan-STARRS1 project will also help improve the proper motion and parallax measurements.

4. RESULTS

4.1. Selection of WDs by Reduced Proper Motion

The "reduced proper motion" (RPM), defined as H = m + 5log μ + 5 = M + 5log vtan − 3.379, where μ is measured in arcsec yr−1 and vtan in km s−1, is therefore a proxy for absolute magnitude for a given transverse velocity. With accurate photometry and astrometry, these diagrams can reveal a very clean separation of stars into main sequence, subdwarfs, and WDs. For example, the contamination rate of the WD locus by subdwarfs is only 1%–2% for the SDSS + USNO-B RPM diagram (Kilic et al. 2006). The $H_{g_{P1}}$ versus (gr)P1 and $H_{r_{P1}}$ versus (ri)P1 RPM diagrams for our 1000 proper motions are presented in Figure 2. That the gap between subdwarfs and WDs is so clearly visible is a testament to the high accuracy of the Pan-STARRS1 photometry and proper motions at this relatively stringent selection criterion.

Figure 2.

Figure 2. Pan-STARRS1 Medium-Deep field proper motion diagrams. Left panel is in gP1, iP1 space, and the right panel is in rP1, iP1 space. The large clump on the right comprises main-sequence stars, subdwarfs make up the middle clump that separates well in (ri)P1, and the blue, faint objects on the left are candidate WD stars.

Standard image High-resolution image

We use these RPM diagrams to identify 47 WD candidates. Astrometric and photometric data for these objects are given in Tables 5 and 6, respectively. About half of our sample has proper motion measurements available in the literature (Munn et al. 2004; Lépine & Shara 2005). Figure 3 shows a comparison of our proper motion measurements and the literature values. Open circles mark the objects with unreliable proper motions from the SDSS + USNO-B. Ignoring those, there is good agreement between our proper motion measurements and the literature values.

Figure 3.

Figure 3. Pan-STARRS1 (this work) vs. SDSS+USNO-B or LSPM (Munn et al. 2004; Lépine & Shara 2005) proper motion measurements (arcsec yr−1) for 24 WD candidates. Objects with unreliable SDSS+USNO-B proper motions (detected in <5 epochs) are shown as open circles.

Standard image High-resolution image

Table 5. Pan-STARRS1 MDF White Dwarf Candidates, Astrometric Data

OBJID R.A. (J2000) Decl. (J2000) Npts μR.A. σμRA μDecl. σμDecl. π σπ
PSO J035.1219−04.4538 35.12198 −4.45385 120 49 15 −106 16 23 10
PSO J036.1807−02.7150* 36.18072 −2.71503 85 392 19 37 21 4 16
PSO J036.1820−02.7157* 36.18203 −2.71578 80 383 21 53 24 2 16
PSO J053.8940−27.1420 53.89408 −27.14205 68 49 31 −343 35 11 19
PSO J053.9285−27.4034 53.92850 −27.40348 107 51 18 102 16 29 10
PSO J128.8195+44.7108 128.81959 44.71086 131 12 13 −120 13 12 10
PSO J128.9494+44.4259 128.94944 44.42598 172 −3 7 −64 7 8 6
PSO J130.1413+43.5130 130.14136 43.51305 138 −17 10 −70 10 −8 7
PSO J130.3780+44.1562 130.37809 44.15620 157 71 9 −53 9 −6 8
PSO J130.5828+43.8370 130.58286 43.83708 158 −37 9 −52 9 −15 7
PSO J131.0677+45.8815 131.06776 45.88157 25 51 53 −253 41 −36 34
PSO J131.2406+45.6086 131.24064 45.60864 175 −54 10 −175 9 11 6
PSO J132.0255+43.9883 132.02558 43.98836 145 −86 12 −10 11 −12 9
PSO J132.2560+44.6595 132.25604 44.65954 177 −197 13 −96 12 12 6
PSO J148.6936+01.4568 148.69365 1.45680 54 149 19 −272 20 0 23
PSO J148.9818+03.1285 148.98181 3.12853 51 −14 39 −249 36 −28 48
PSO J149.3101+02.6967 149.31014 2.69677 136 −187 8 −104 8 14 10
PSO J149.3311+03.1446 149.33117 3.14463 120 45 10 −94 9 4 10
PSO J149.7106+01.7900 149.71066 1.79004 142 74 11 −6 15 13 9
PSO J149.7616+01.6465 149.76161 1.64656 140 18 9 −69 12 1 9
PSO J149.8925+02.9603 149.89256 2.96030 141 −59 12 −96 10 27 9
PSO J150.1696+03.6030 150.16966 3.60309 115 9 11 −90 11 −7 13
PSO J150.8329+02.1407 150.83292 2.14079 117 −90 12 25 11 1 15
PSO J151.3094+02.9046 151.30944 2.90467 114 −692 14 18 14 1 14
PSO J159.5163+57.6086 159.51636 57.60867 110 −10 12 −259 12 4 12
PSO J160.5173+58.5631 160.51739 58.56312 148 −99 14 −81 12 −1 8
PSO J160.6208+59.0860 160.62083 59.08602 44 −438 66 −49 65 −23 59
PSO J161.4917+59.0766 161.49173 59.07662 98 −1016 13 −1417 12 22 11
PSO J161.8956+59.2131 161.89562 59.21314 156 −32 14 −169 25 −8 7
PSO J162.2873+57.7484 162.28730 57.74848 23 −60 84 520 84 133 70
PSO J164.1738+57.2466 164.17384 57.24660 141 −13 12 −119 20 19 8
PSO J164.1744+58.4375 164.17447 58.43759 140 −132 19 12 15 21 9
PSO J183.8810+46.5039 183.88106 46.50397 178 −285 40 24 15 0 7
PSO J185.6294+46.1184 185.62949 46.11848 155 −63 11 −27 10 11 8
PSO J186.4406+47.1036 186.44063 47.10365 169 −143 13 22 15 −7 7
PSO J213.0478+52.6587 213.04785 52.65875 144 −51 12 72 12 −17 8
PSO J214.3502+52.8743 214.35023 52.87438 172 −55 10 57 20 −12 6
PSO J215.0267+53.3759 215.02672 53.37591 187 98 18 −89 15 13 5
PSO J241.3352+55.9465 241.33522 55.94657 172 −209 11 191 8 −1 5
PSO J242.8803+54.6275 242.88030 54.62755 97 17 16 −98 16 −3 10
PSO J333.8526−00.8187 333.85260 −0.81878 13 616 116 −411 115 11 178
PSO J334.4434−00.3065 334.44341 −0.30654 118 84 13 −58 14 0 15
PSO J334.5518−00.0227 334.55185 −0.02278 125 49 11 −97 11 7 14
PSO J334.7932+00.8453 334.79324 0.84537 136 −102 12 −10 10 18 12
PSO J334.8792+01.0115 334.87925 1.01154 137 271 12 −35 21 17 12
PSO J352.7302+00.4814 352.73028 0.48142 125 154 12 113 13 5 11
PSO J353.2230−00.5556 353.22300 −0.55562 116 65 14 62 15 10 13

Notes. The columns present Object ID designations, R.A., and Decl. (J2000) in decimal degrees (for epoch 2010.5) the number of valid astrometric observations per star, the measured proper motions in R.A. and Decl. (in mas per year), their associated uncertainties, the fitted parallax and its uncertainty, in mas. (We do not regard any of the parallax values to be significant.) * This appears to be a binary WD pair with a common proper motion.

Download table as:  ASCIITypeset image

Table 6. Pan-STARRS1 MDF White Dwarf Candidates, Photometric Data

OBJID gP1 $\sigma _{g_{\rm P1}}$ rP1 $\sigma _{r_{\rm P1}}$ iP1 $\sigma _{i_{\rm P1}}$ zP1 $\sigma _{z_{\rm P1}}$ yP1 $\sigma _{y_{\rm P1}}$
PSO J035.1219−04.4538 22.21 0.04 21.26 0.02 20.82 0.02 20.66 0.02 20.64 0.04
PSO J036.1807−02.7150 19.60 0.04 19.01 0.05 18.89 0.05 18.80 0.05 18.70 0.05
PSO J036.1820−02.7157 19.60 0.04 18.96 0.05 18.78 0.05 18.69 0.05 18.62 0.05
PSO J053.8940−27.1420 22.77 0.06 21.89 0.04 21.48 0.03 21.33 0.03 21.28 0.12
PSO J053.9285−27.4034 19.83 0.02 19.89 0.02 19.98 0.03 20.16 0.03 20.35 0.07
PSO J128.8195+44.7108 22.32 0.04 21.52 0.02 21.17 0.02 21.05 0.02 20.98 0.05
PSO J128.9494+44.4259 18.43 0.02 18.66 0.02 18.88 0.02 19.11 0.02 19.24 0.02
PSO J130.1413+43.5130 20.27 0.02 19.99 0.03 19.89 0.02 19.88 0.02 19.91 0.04
PSO J130.3780+44.1562 20.61 0.02 20.28 0.02 20.12 0.02 20.09 0.02 20.04 0.03
PSO J130.5828+43.8370 20.72 0.02 20.45 0.02 20.33 0.03 20.31 0.02 20.33 0.03
PSO J131.0677+45.8815 21.48 0.04 21.24 0.05 21.11 0.05 21.17 0.04 21.20 0.15
PSO J131.2406+45.6086 15.96 0.05 15.98 0.03 16.02 0.03 16.14 0.02 16.27 0.02
PSO J132.0255+43.9883 21.24 0.02 20.92 0.02 20.67 0.02 20.78 0.02 20.90 0.07
PSO J132.2560+44.6595 17.95 0.02 17.62 0.02 17.50 0.02 17.49 0.02 17.52 0.02
PSO J148.6936+01.4568 19.21 0.04 19.12 0.05 19.19 0.05 19.27 0.06 19.24 0.15
PSO J148.9818+03.1285 22.79 0.06 21.91 0.00 21.75 0.00 21.44 0.00 22.30 0.30
PSO J149.3101+02.6967 20.27 0.02 19.47 0.02 19.10 0.02 19.00 0.02 18.95 0.02
PSO J149.3311+03.1446 19.34 0.02 19.10 0.02 18.98 0.02 19.03 0.02 19.01 0.02
PSO J149.7106+01.7900 15.56 0.07 15.87 0.05 16.12 0.02 16.38 0.02 16.52 0.02
PSO J149.7616+01.6465 17.95 0.03 18.13 0.02 18.34 0.02 18.52 0.02 18.68 0.02
PSO J149.8925+02.9603 18.24 0.02 18.11 0.02 18.07 0.02 18.12 0.02 18.21 0.02
PSO J150.1696+03.6030 20.90 0.02 20.56 0.02 20.40 0.02 20.36 0.02 20.42 0.04
PSO J150.8329+02.1407 21.53 0.02 20.96 0.02 20.74 0.02 20.71 0.02 20.81 0.03
PSO J151.3094+02.9046 20.55 0.00 19.76 0.00 19.36 0.00 19.42 0.06 19.18 0.05
PSO J159.5163+57.6086 21.92 0.03 21.04 0.02 20.61 0.02 20.47 0.02 20.41 0.03
PSO J160.5173+58.5631 19.05 0.02 18.96 0.02 18.97 0.02 19.07 0.02 19.16 0.02
PSO J160.6208+59.0860 22.09 0.06 21.27 0.00 21.09 0.07 21.07 0.06 20.70 0.20
PSO J161.4917+59.0766 18.33 0.00 18.19 0.00 18.16 0.00 17.98 0.00 18.14 0.03
PSO J161.8956+59.2131 17.80 0.02 17.83 0.02 17.93 0.02 18.06 0.02 18.19 0.02
PSO J162.2873+57.7484 23.79 0.13 22.86 0.07 21.86 0.04 21.59 0.07 21.43 0.12
PSO J164.1738+57.2466 18.40 0.03 18.27 0.02 18.27 0.02 18.35 0.02 18.51 0.02
PSO J164.1744+58.4375 18.3 0.15 18.24 0.03 18.15 0.04 17.9 0.15 18.09 0.04
PSO J183.8810+46.5039 17.30 0.02 17.08 0.02 17.00 0.02 16.99 0.02 17.05 0.03
PSO J185.6294+46.1184 20.96 0.02 20.39 0.02 20.11 0.02 20.07 0.02 20.09 0.03
PSO J186.4406+47.1036 19.61 0.02 19.04 0.02 18.86 0.02 18.95 0.02 19.05 0.02
PSO J213.0478+52.6587 20.62 0.02 20.54 0.02 20.57 0.02 20.62 0.02 20.70 0.03
PSO J214.3502+52.8743 19.32 0.02 19.25 0.02 19.26 0.02 19.32 0.02 19.41 0.02
PSO J215.0267+53.3759 16.97 0.02 16.84 0.02 16.85 0.02 16.90 0.02 16.94 0.02
PSO J241.3352+55.9465 17.80 0.02 17.57 0.02 17.50 0.02 17.52 0.02 17.56 0.02
PSO J242.8803+54.6275 22.14 0.03 21.24 0.04 20.82 0.02 20.71 0.03 20.60 0.03
PSO J333.8526−00.8187 24.07 0.12 23.57 0.06 22.87 0.05 22.63 0.07 22.56 0.17
PSO J334.4434−00.3065 21.38 0.02 20.73 0.02 20.45 0.02 20.39 0.02 20.48 0.03
PSO J334.5518−00.0227 20.89 0.02 20.32 0.02 20.05 0.02 19.97 0.02 19.95 0.03
PSO J334.7932+00.8453 19.82 0.02 19.63 0.02 19.59 0.02 19.64 0.02 19.68 0.02
PSO J334.8792+01.0115 19.43 0.02 18.96 0.02 18.75 0.02 18.69 0.02 18.73 0.02
PSO J352.7302+00.4814 19.71 0.02 18.93 0.02 18.60 0.02 18.46 0.02 18.43 0.02
PSO J353.2230−00.5556 20.90 0.02 20.37 0.02 20.17 0.02 20.08 0.02 20.08 0.03

Note. The columns present Object ID designations, gP1, rP1, iP1, zP1, yP1, magnitudes, and uncertainties.

Download table as:  ASCIITypeset image

4.2. Optical Spectroscopy

Twelve of our candidates have optical spectroscopy available in the literature: all of them are previously known WDs, including 6 DAs, 4 DQs, 1 DC, and 1 DZ. PSO J161.4917+59.0766 (LHS 291) is perhaps the most interesting, with a proper motion of 1farcs7 yr−1. The identification of this object in our data demonstrates that the Pan-STARRS1 Medium-Deep field data are able to identify even the fastest moving halo objects.

We obtained spectroscopic observations of a dozen candidates, as summarized in Table 7, with the Hectospec instrument (Fabricant et al. 2005) on the MMT. The objects were selected on the basis of field access and were part of a broader program of Pan-STARRS1 follow-up spectroscopy. The Hectospec fibers are 1farcs5 in diameter. We operate the spectrograph with the 270 lines mm−1 grating, providing wavelength coverage 3700–9200 Å and a spectral resolution of 5 Å with a dispersion of 1.2 Å pixel−1. The spectra were reduced, including flat fielding and wavelength calibration, by the Telescope Data Center pipeline (Mink et al. 2007), at the Center for Astrophysics. Sky subtraction was performed using the spectra from fibers placed on blank sky regions. Flux calibration was performed using standard star observations from an earlier observing run. Therefore, the absolute flux calibration, as well as the relative continuum shape, of our spectra cannot be trusted. However, this level of resolution is sufficient to identify and separate WDs from metal-poor subdwarfs.

Table 7. Spectroscopic Observations

PS1 ID UT Observed texp
    (s)
PSO J035.1219−04.4538 2011-10-26T05:07:08 3600
PSO J036.1807−02.7150 2011-10-25T05:46:15 6684
PSO J162.2873+57.7484 2011-06-08T03:46:11 4500
PSO J164.1738+57.2466 2011-06-09T03:40:18 3600
PSO J183.8810+46.5039 2011-06-11T05:49:36 4800
PSO J213.0478+52.6587 2011-06-05T04:58:09 3600
PSO J215.0267+53.3759 2011-06-04T04:51:16 3600
PSO J242.8803+54.6275 2011-06-04T06:11:52 3600
PSO J334.7932+00.8453 2011-09-25T04:58:27 3600
PSO J334.8792+01.0115 2011-09-25T04:58:27 3600
PSO J352.7302+00.4814 2011-10-26T03:37:44 3600
PSO J353.2230−00.5556 2011-09-23T08:28:21 4800

Download table as:  ASCIITypeset image

The resulting spectra are presented in Figure 4. Sky subtraction problems are noticeable in the 2011 September/October data due to non-photometric conditions for these observations. Three of the objects with Hectospec spectra were previously known WDs. PSO J164.1738+57.2466 is a known DZ WD with only Ca H and K absorption visible in its optical spectrum. PSO J215.0267+53.3759 is a known DA WD with Balmer absorption lines. PSO J352.7302+00.4814 is a known DC WD with no obvious absorption lines. Two of the objects observed with Hectospec, PSO J035.1219−04.4538 and PSO J162.2873+57.7484, are too faint for the instrument and conditions, and therefore not included in this figure. The remaining seven objects are newly confirmed WDs. PSO J036.1807−02.7150 and PSO J183.8810+46.5039 are DA WDs with hydrogen atmospheres. The lack of detection of Balmer lines in the relatively warm DC WDs PSO J213.0478+52.6587 and PSO J334.7932+00.8453 indicates that they have helium-dominated atmospheres. The most interesting of the bunch, PSO J242.8803+54.6275, is a cool DC WD with a featureless spectrum. Even though our spectrum is somewhat noisy, the lack of detection of strong MgH and Na absorption lines in the spectrum of such a red object ((gi)P1 = 1.32 mag) confirms the WD classification (see Figure 5 in Kilic et al. 2006). The spectral classification for these WDs, as well as the previously known WDs, is listed in Table 8. The fact 19 out of 19 RPM candidates for which optical spectroscopy was available turned out to be WD is evidence that the remainder of the RPM selected sample is highly likely to be WD as well.

Figure 4.

Figure 4. MMT Hectospec spectra for ten objects identified as WDs in 2011 June (top panel) and 2011 September/October (bottom panel).

Standard image High-resolution image

Table 8. Pan-STARRS1 MDF White Dwarf Candidates, Physical Parameters

OBJID Type Teff d Vtan Cooling Age
    (K) (pc) (km s−1) (Gyr)
PSO J035.1219−04.4538 ... 4170 127 70 ± 19 8.6
PSO J036.1807−02.7150 DA* 5100 71 133 ± 28 5.2
PSO J036.1820−02.7157 ... 4900 64 117 ± 25 6.1
PSO J053.8940−27.1420 ... 4280 178 292 ± 71 8.3
PSO J053.9285−27.4034 ... 9670 317 171 ± 50 0.7
PSO J128.8195+44.7108 ... 4640 177 101 ± 25 7.1
PSO J128.9494+44.4259 DA 13370 249 76 ± 19 0.3
PSO J130.1413+43.5130 ... 6150 159 54 ± 15 2.1
PSO J130.3780+44.1562 ... 5950 169 71 ± 17 2.3
PSO J130.5828+43.8370 ... 6330 205 62 ± 18 2.0
PSO J131.0677+45.8815 ... 6540 313 383 ± 125 1.8
PSO J131.2406+45.6086 DA 9110 47 41 ± 9 0.8
PSO J132.0255+43.9883 ... 6010 231 95 ± 26 2.2
PSO J132.2560+44.6595 ... 6100 53 55 ± 12 2.2
PSO J148.6936+01.4568 ... 7950 165 242 ± 53 1.1
PSO J148.9818+03.1285 ... 4350 197 233 ± 68 8.0
PSO J149.3101+02.6967 ... 4570 67 68 ± 14 7.3
PSO J149.3311+03.1446 ... 6480 115 57 ± 14 1.8
PSO J149.7106+01.7900 DA 15670 85 30 ± 10 0.2
PSO J149.7616+01.6465 DA 12160 183 62 ± 18 0.4
PSO J149.8925+02.9603 DA 7890 100 53 ± 13 1.1
PSO J150.1696+03.6030 ... 5940 192 82 ± 22 2.4
PSO J150.8329+02.1407 ... 5170 179 79 ± 21 4.8
PSO J151.3094+02.9046 ... 4570 77 253 ± 51 7.3
PSO J159.5163+57.6086 ... 4350 123 151 ± 32 8.0
PSO J160.5173+58.5631 DQ 10080: ... ... ...
PSO J160.6208+59.0860 ... 5340 220 459 ± 133 4.0
PSO J161.4917+59.0766 DQ 10110: ... ... ...
PSO J161.8956+59.2131 DQ: 10150: ... ... ...
PSO J162.2873+57.7484 WD+dM? ... ... ... ...
PSO J164.1738+57.2466 DZ* 7420 99 56 ± 16 1.3
PSO J164.1744+58.4375 ... 6610 79 50 ± 13 1.8
PSO J183.8810+46.5039 DA* 6640 47 64 ± 16 1.7
PSO J185.6294+46.1184 ... 5040 128 42 ± 12 5.5
PSO J186.4406+47.1036 DQ 6109 ... ... ...
PSO J213.0478+52.6587 DC* 7860 308 129 ± 36 1.1
PSO J214.3502+52.8743 ... 7890 170 64 ± 22 1.1
PSO J215.0267+53.3759 DA* 8040 58 36 ± 10 1.1
PSO J241.3352+55.9465 ... 6660 60 81 ± 17 1.7
PSO J242.8803+54.6275 DC* 4250 130 61 ± 19 8.4
PSO J333.8526−00.8187 WD+dM? ... ... ... ...
PSO J334.4434−00.3065 ... 4840 138 67 ± 18 6.4
PSO J334.5518−00.0227 ... 5000 121 62 ± 15 5.7
PSO J334.7932+00.8453 DC* 6970 167 81 ± 20 1.5
PSO J334.8792+01.0115 DC* 5430 78 101 ± 22 3.5
PSO J352.7302+00.4814 DC* 5130 67 61 ± 13 5.0
PSO J353.2230−00.5556 DC* 5210 137 58 ± 18 4.6

Notes. Spectral types for previously known WDs are from Eisenstein et al. (2006); Liebert et al. (2005); Koester & Knist (2006), and Kilic et al. (2006). Asterisks (*) designate objects for which we obtained spectra.

Download table as:  ASCIITypeset image

4.3. Photometric Distances

Figure 5 shows the optical color–color diagrams for our sample of WDs compared to model predictions from P. Bergeron (2010, private communication). There are two objects, PSO J162.2873+57.7484 and PSO J333.8526−00.8187, with very red (⩾0.7 mag) (ri)PS colors. We classify these objects as WD + M dwarf binaries. There are also two other objects, PSO J131.0677+45.8815 and J132.0255+43.9883, with (ug)SDSS versus (gr)SDSS colors similar to the known DQ WDs (bottom right panel). These objects may be DQ WDs as well, and optical spectroscopy is needed to see if they show the C2 swan bands. PSO J148.9818+03.1285 is the only object with a relatively blue (zy)PS color. Hydrogen-rich cool WDs are expected to show strong flux deficits in the infrared from collision induced absorption due to molecular hydrogen (Bergeron et al. 1995; Hansen 1998). PSO J148.9818+03.1285 may be one such WD. However, the yP1-band measurement for this object has a large error, and therefore, the absorption may not be real. Other than these outliers, the remaining 42 candidates overlap with WD model predictions in various color–color diagrams. Hence, these models can be used to derive temperatures for our targets.

Figure 5.

Figure 5. Pan-STARRS1 and SDSS (bottom right panel) color–color diagrams for our sample of WD candidates. Spectroscopically confirmed DA (blue), DQ (magenta), DZ (green), and DC (red) WDs are marked. The solid lines show the predicted colors for pure hydrogen atmosphere WDs with Teff = 1500–110, 000 K and log g = 7, 8, and 9 (only the log g = 8 and Teff ⩾ 2000 K sequence is shown in the bottom right panel).

Standard image High-resolution image

We use all five Pan-STARRS1 magnitudes to fit WD models with hydrogen atmospheres to determine the temperature, absolute magnitude, and distance of each target. Since the Pan-STARRS1 parallax measurements for our targets have limited accuracy, we assume a surface gravity of log g = 8 which determines the radius of the star for a given value of temperature. The mass distribution of WDs shows strong peaks at 0.61 ± 0.1 M for DA and 0.67 ± 0.1 M for DB WDs (Tremblay et al. 2011; Bergeron et al. 2011); these ranges imply log g = 8  ±  0.3. Hence, our assumption of log g = 8 is reasonable.

Cool WD spectral energy distributions are clearly affected by the Lyα red wing opacity in the blue (Kowalski & Saumon 2006). Since these models do not include the Lyα opacity, we use them to analyze only the WDs hotter than 4600 K. For cooler targets, we use the observed colors of cool WDs from Kilic et al. (2009, 2010, analyzed using Kowalski & Saumon 2006 models) as templates to estimate the temperatures of our targets. These templates cover the temperature range 3730–6290 K. Based on the Pan-STARRS1 and the SDSS colors, the temperature estimates from both the models and the templates agree to within 200 K for stars in the temperature range 4600–6000 K.

The photometric spectral energy distributions of six of the coolest objects in our sample are shown in Figure 6. The points with error bars show Pan-STARRS1 photometry and the solid lines show the best-fitting templates. For example, the energy distribution of PSO J035.1219−04.4538 (top left panel) is most similar to the WD SDSS J2222+1221 (Kilic et al. 2009), which has a temperature of 4170 K based on the Kowalski & Saumon (2006) models. Hence, we assign a temperature of 4170 K for PSO J035.1219−04.4538. Given this temperature and assuming log g = 8, we then estimate an absolute magnitude of Mg = 16.5 and a distance of 127 pc.

Figure 6.

Figure 6. Spectral energy distributions of six WDs with Teff = 4170–4570 K. Points with error bars show the Pan-STARRS1 photometry. The solid lines show the best-fit cool WD templates. The dotted line shows the predicted model fluxes for a Teff = 3080 K WD.

Standard image High-resolution image

One of the objects in Figure 6, PSO J148.9818+03.1285, may be a WD with a strong yP1 flux deficit. If this absorption is real, then the best-fit pure hydrogen atmosphere WD model would have Teff = 3080 K and a cooling age of 11.1 Gyr. If so, PSO J148.9818+03.1285 would be a very old thick disk or halo WD. However, near-infrared photometry is required to confirm the flux deficit in the infrared and to perform a detailed model atmosphere analysis. Many of the infrared-faint WDs have mixed H/He atmospheres (Kilic et al. 2010), where the effects of the collision induced absorption due to molecular hydrogen become significant at hotter temperatures (>4000 K) compared to the pure hydrogen atmosphere counterparts.

Table 8 lists the effective temperatures, distances, and tangential velocities for those stars whose position in the RPM diagram and color–color space indicates that they are WDs. The estimated distances and WD cooling ages for our targets range from about 50 pc to 300 pc and 0.2 Gyr to 8.6 Gyr, respectively. Two of the WD candidates, PSO J036.1807−02.7150 and PSO J036.1820−02.7157, are adjacent and have identical proper motions. Our temperature (4900 K and 5100 K) and distance (64 pc and 71 pc) estimates for these two stars agree to within the uncertainties, adding support to the hypothesis that these two stars are a physically associated binary system. The small differences between the temperatures and distances of the two stars can be explained by a small difference in mass.

Figure 7 shows the distribution of inferred ages and tangential velocities, with the assumption that the distance error is 20%. The coolest WDs in our sample have temperatures around 4200 K. Even though the individual ages for our targets cannot be trusted due to the unknown distances and masses, the average mass for our sample should be about 0.6 M and the average age for the oldest stars in our sample should be reliable. Adding 1.4 Gyr for the main-sequence lifetime of the 2 M solar-metallicity progenitor stars (Marigo et al. 2008) brings the total age to about 10 Gyr, entirely consistent with the oldest disk WDs known (e.g., Table 2 of Leggett et al. 1998), and the Galactic disk age of 8 ± 1.5 Gyr. A few of the oldest targets have large tangential velocities, and therefore they may be halo WDs. The best halo WD candidate is the 8.3 Gyr old (cooling age) PSO J053.8940−27.1420. Assuming a radial velocity of 0 ± 50 km s−1 and a distance error of 20%, PSO J053.8940−27.1420 has U = 213 ± 52, V = −207 ± 55, and W = 2 ± 44 km s−1 with respect to the local standard of rest (Hogg et al. 2005). Given the relatively large velocity errors, the remaining targets are consistent with thin or thick disk membership.

Figure 7.

Figure 7. Tangential velocities and WD cooling ages for our targets. (The high velocity, young WDs presumably have higher mass than 0.6 M and their lower luminosity for a given temperature causes us to assign an erroneously high distance and velocity.)

Standard image High-resolution image

Figure 8 presents finding charts for those new objects that do not reside in the SDSS fields.

Figure 8.

Figure 8. Finding charts for the objects in our candidate catalog that do not reside in the SDSS fields. North is up, east is left, and the iP1 images are 1' on a side.

Standard image High-resolution image

5. DISCUSSION

Deep, wide-field surveys like Pan-STARRS1 provide an unprecedented opportunity for the studies of different stellar populations in the Galaxy. Based on the stellar locus of half a million stars from the ten Medium-Deep fields, we demonstrate that the systematic uncertainty in the Pan-STARRS1 photometric zero points is a few percent. In addition, the relatively high cadence of the Pan-STARRS1 Medium-Deep field observations enables searches for highly variable (e.g., supernovae) and/or moving objects like nearby asteroids or high proper motion stars. Here, we take advantage of the first two years of data from the Medium-Deep field observations to select 47 WD candidates using an RPM diagram. We are able to find objects with proper motions as large as 1farcs7 yr−1. Hence, our survey is sensitive to faint halo WDs with large tangential velocities.

A comparison with WD atmosphere models and previously known cool WDs shows that our sample contains WDs down to 4200 K, which corresponds to a main-sequence + WD cooling age of 10 Gyr. A few of the oldest objects in our sample have large tangential velocities that may indicate halo membership. We use the Besançon Galaxy model (Robin et al. 2003) to simulate the stellar populations in the Medium-Deep fields. For our magnitude and proper motion limits and using the coordinates for one of our fields (MD4), the Besançon model predicts 24 thick disk and 3 halo WDs in 70 deg2. Our sample of 47 WD candidates is therefore likely to contain ∼3 halo WDs. However, our parallaxes as yet lack adequate accuracy to claim that they are indeed halo WDs. Pan-STARRS1 will continue to observe the Medium-Deep fields over the course of the next two years, and the Pan-STARRS1 astrometric catalog is imminent and will significantly improve the proper motion and parallax precision for these targets.

For this initial project to find WDs in the Pan-STARRS1 data we concentrated on sample purity rather than completeness, and the astrometric bias correction was particularly draconian. We present proper motions to a limit of 60 mas yr−1 and gP1 ∼ 22.5. Doubling the number of epochs should improve accuracy by 23/2 and bring us to measurements of ∼20 mas yr−1 with uncertainty of ∼3 mas yr−1. At 20 mas yr−1 over 70 deg2, even without co-adding to improve the nightly stack detection limit, the Besançon model predicts that we ought to be able to find some 850 WDs. By co-adding nightly stacks to reach a limiting magnitude of gP1 ∼ 23.5 this number rises to about 1500. We look forward to being able to probe the halo WD population with such a clean, large sample, and employ them to chart the history of the Milky Way.

Support for this work was provided by National Science Foundation grant AST-1009749. The PS1 Surveys have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, and the Las Cumbres Observatory Global Telescope Network, Incorporated, the National Central University of Taiwan, and the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate.

The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory, and we have benefited from NASA's Astrophysics Data System Bibliographic Services and the SIMBAD database, operated at CDS, Strasbourg, France.

Facilities:PS1(GPC) - Panoramic Survey Telescope and Rapid Response System Telescope #1 (Pan-STARRS), MMT(Hectospec) - MMT at Fred Lawrence Whipple Observatory

Footnotes

Please wait… references are loading.
10.1088/0004-637X/745/1/42