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ABSTRACT

We calculate the irreducible triplet contribution to galaxy clustering in the cosmological many-body problem.
These triplets generally represent short-lived configurations in which three close objects interact with pairwise grav-
itational forces. From the resulting grand canonical partition function, we obtain higher order analytical expressions
for thermodynamic quantities such as specific heats, isothermal compressibility, and thermal expansion in the system.
Compared with previous analyses, which included reducible but not irreducible triplets, the additional terms are usu-
ally small, especially in the limit of large N. This confirms the thermodynamic results. We also derive the modified
spatial distribution functions and show that they agree with recent observational results. The inclusion of triplet and
higher order irreducible clusters does not significantly modify the results of the reducible terms in the partition func-
tion or of its thermodynamic consequences such as the distribution function.

Subject headinggs: cosmology: theory — galaxies: clusters: general — gravitation —
large-scale structure of universe — methods: analytical

1. INTRODUCTION

The discovery of a fundamental statistical mechanical de-
scription of the cosmological many-body problem (Ahmad et al.
2002, hereafter Paper I) has provided a more rigorous basis for its
earlier thermodynamic description (summarized, e.g., in Saslaw
2000). The statistical mechanical approach agrees with thermo-
dynamics and is also more powerful for some purposes such
as determining the velocity and energy distribution functions,
along with the associated probabilities that clusters are bound
and virialized (Leong & Saslaw 2004). It is also more general,
allowing the particles to have softened gravitational potentials,
corresponding to models of galaxies with dark matter halos. Fur-
thermore, it can be generalized to systems in which the particles,
such as galaxies, have differentmasses (Ahmad et al. 2006). These
results agree very well withN-body simulations (Itoh et al. 1988,
1990, 1993; Inagaki et al. 1992). They also describe the observed
spatial distribution functions of galaxies with increasing accu-
racy as the catalogs become larger and more complete. The most
recent example is the analysis of the extended sources in the
2MASS (Two Micron All Sky Survey) catalog, where the the-
ory, which has no free parameters, agrees with the observations
to better than 97% (Sivakoff & Saslaw 2005).

The cosmological many-body problem simply asks how a very
large number of particles will cluster under their mutual gravi-
tational interactions in a statistically homogeneous, slowly ex-
panding universe. These last two conditions imply that over a
wide range of spatial scales the system is in quasi-equilibrium.
Then, the usual thermodynamic quantities such as density, pres-
sure, temperature, and correlation energy are well defined and

relax locally at a faster rate than they change globally due to the
universe’s expansion. This is reasonable theoretically in the
usual models of general relativity (Saslaw & Fang 1996; Saslaw
2000), as well as in those currently modified by dark energy or
quintessence. Details of these models affect the amplitude of clus-
tering as a function of time or redshift, but they do not change the
form of the distribution functions, provided they satisfy the quasi-
equilibrium condition. The theory applies if the dark matter is
mostly in halos around individual galaxies when they cluster, or
if dark matter and energy are distributed essentially uniformly.
A detailed description of the conditions and length scales for

quasi-equilibrium evolution remains an important unsolved prob-
lem;N-body simulations (e.g., Itoh 1990) showed that a range of
initial states whose power spectra are power laws with exponents
between about�1 satisfy quasi-equilibrium evolution. They agree
with the present observations of the galaxy spatial distribution. A
characteristic feature of these simulations is that they have no ini-
tial nonlinear structures that extend over scales comparable with
the system and that are stable for at least several expansion time-
scales. Such initial states would not relax to a quasi-equilibrium
state, and the distribution functions of systems containing them
would not evolve into the form of equation (58) below. This type
of unrelaxed initial structure occurs in some CDM (cold dark
matter) models (Fukushige & Makino 2003), and we would not
expect such examples to be describedwell by equation (58). Other
examples, with low-amplitude initial structure on large scales, can
relax (cf. Saslaw 2000, p. 372) to equation (58). Unfortunately,
most CDM models require a number of additional assumptions
to convert their dark matter distribution to visible galaxies. The
consequences of these assumptions for more powerful statistics
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such as spatial and velocity distribution functions have not yet
been systematically examined. The cosmological many-body sys-
tem explored here is relatively more straightforward, and its phys-
ical description is also of interest in its own right.

Our analysis in Paper I started by deriving the grand canonical
partition function, from which all the basic statistical mechanical
and thermodynamic properties of this system can be calculated.
To simplify the analytic derivation in Paper I, we neglected terms
in the configuration integral (eq. [9] of Paper I or eq. [3] below)
of the form f12 f13 f23 ( ), and higher order irreducible terms.
These represent the simultaneous pairwise (because the individ-
ual gravitational potentials always depend on just two particles)
interactions of three or more particles. Even though early results
(Saslaw et al. 1990) suggested these irreducible terms would be
small, their significance and consequences need to be investigated
for several reasons.

First, it is a check on the validity of the results in Paper I and
how they would be modified by this more exact calculation. Sec-
ond, it has long been known that the galaxy three-point corre-
lation function can be reasonably well approximated by the form

�3 ¼ Q3(�12�13 þ �23�21 þ �31�32);

which does not include the triplet term �123(r12; r23; r31). Ob-
served values of Q3 are given as 0:80� 0:07 (Groth & Peebles
1977) and 1:0� 0:2 (Peebles 1993) for optical samples, with pos-
sibly smaller values for infrared samples. In the three-dimensional
Southern Sky Redshift sample, Benoist et al. (1999) found Q3 ¼
0:61� 0:04. Their analysis gives a range of Q3 values depend-
ing on the subsample. These are roughly consistent with the value
of 0.75 (Saslaw et al. 1990) derived for the thermodynamic de-
scription of the cosmological many-body problem. Since �123 is
determined by the same class of spatially close three-body in-
teractions described by f12 f13 f23, our calculation of the latter will
also imply that �123 is relatively unimportant, which has pre-
viously been a bit mysterious. Third, our understanding of the
irreducible triplet term provides insight into the role of strong
three-body interactions, which, depending on initial conditions,
may provide nuclei that influence further clustering. Fourth, our
gravitational system shows interesting differences from the more
familiar case of a molecular or atomic gas. In the gaseous case,
the irreducible triplet terms lead to additional polarization effects
(Graben & Present 1962), which have been computed by sev-
eral methods (Axilrod 1951; Midzuno & Kihara 1956). An ele-
gant geometric method by Katsura (1959) is useful for low-order
irreducible contributions for hard-core and square-well poten-
tials, and fourth and higher order terms can be estimated numer-
ically with Monte Carlo techniques (e.g., Alder & Hoover 1968).
However, for the gravitational potential, we must make a fresh
start from first principles.

In x 2 we introduce the basic cluster expansion formalism and
our notation. Then we evaluate the irreducible triplet term and
use it to derive the partition function to a higher order approxi-
mation in x 3. In x 4 we examine the effects of irreducible triplets
on the thermodynamic functions, and then in x 5 we use these
results to derive the modified spatial distribution function and
compare it with recent observations. Section 6 summarizes and
discusses the results further.

2. BASIC FORMALISM

As a first step toward the application of the cluster expansion
method to the gravitational many-body problem, we consider a
single-component, classical system whose potential energy is

given by a sum of two-particle interactions. The general partition
function for a system of N particles of mass m, average tem-
perature T, and momenta pi interacting via a pair potential � is

ZN (T ;V ) ¼
1

�3NN !

;

Z
exp �

XN
i¼1

p2i
2m

þ �(r1; r2; : : : ; rN )

" #
T�1

( )
d3Np d3Nr

¼ 1

N !

2�mT

�2

� �3N=2

QN (T ;V ); ð1Þ

where � normalizes the phase space volume cell and

QN (T ;V ) ¼
Z

: : :

Z
exp ��(r1; r2; : : : ; rN )T

�1
� �

d3Nr ð2Þ

is the usual configuration integral, whose evaluation is very com-
plicated, involving a 3N-fold volume integration. However, for
the cosmological many-body problem, Paper I shows that the
partition function has a relatively simple solution for reasonable
physical approximations. Introducing the Mayer function fij ,
the configuration integral is given by

QN T ;Vð Þ ¼
Z

: : :

Z Y
1� i< j�N

1þ f i j
� �

d 3Nr; ð3Þ

where

f i j ¼ e ��ij=Tð Þ � 1: ð4Þ

The integrand in equation (3) can be expanded by writing

WN (r1;r2; : : : ; rN ) ¼
Y

1� i< j�N

(1þ f i j)

¼ 1þ
X

1� i< j�N

f i j þ
X

f i j f i 0j 0 þ
X

f i j f i 0j 0 fi 0 0j 0 0 þ : : ::

ð5Þ

Each set of summations corresponds to a subdivision of the par-
ticles into a particular type of group. Each summed term of the
series in equation (5) is a sum over all the coupled products of the
same order N. This total summation can be represented by all
topologically differentN-particle diagrams. The first few values of
N give

W1(r1) ¼ 1; ð6Þ

W2(r1; r2) ¼ (1þ f12); ð7Þ

W3(r1; r2; r3) ¼ (1þ f12)(1þ f13)(1þ f23); ð8Þ

W4(r1; r2; r3; r4) ¼ (1þ f12)(1þ f13)(1þ f14)

; (1þ f23)(1þ f24)(1þ f34): ð9Þ

If we expand the expression forWN (r1; r2; : : : ; rN ), we find that
the case N ¼ 1 contains only one term, the case N ¼ 2 contains
two terms, the case N ¼ 3 contains eight terms, the case N ¼ 4
contains 64 terms, and so on.

Since the grand canonical partition function contains terms
with arbitrarily large values of N, it is necessary to find a system-
atic procedure for categorizing the various terms in the expansion
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of WN . With the usual graph theory procedure, we can represent
WN (r1; r2; : : : ; rN ) as

WN (r1; r2; : : : ; rN ) ¼
X

(all diAerent N -particle graphs):

ð10Þ

An N-particle graph is obtained by drawing N numbered circles
and connecting them together, with the number of lines (includ-
ing zero) representing the interactions in equation (5), subject
only to the condition that no two circles are connected by more
than one line. Two N-particle graphs are different if the numbered
circles are connected differently.

The case N ¼ 3 has eight terms, which can individually be
written, diagrammatically, as

ð11Þ

This can be represented by grouping all graphs with the same
topological structure together, reducing the graph expression
to

ð12Þ

Similarly, the 64 terms corresponding toN ¼ 4 can be grouped
together so that

ð13Þ

and so on.
There is another reason for writing the configurational integral

as an expansion of graphs, which will become apparent when we
actually evaluate QN (T ;V ). For this, the following properties
will be useful:

1. Each unconnected graph gives a factor of V.
2. If two parts of a graph are connected by a line, the corre-

sponding algebraic expression factors into a product.
3. Each completely connected part of a graph is proportional

to the volume.
4. Some special graphs with an index in common decompose

into a product.

Using the above properties, it can be shown that the terms in
the expansion can be rearranged in such a manner that it is not
necessary to calculate all clusters afresh, but only certain types
known as irreducible clusters. These irreducible clusters have at
least two independent paths, not crossing at a node, between

each pair of particles. Thus, the rightmost graph in equation (12)
and three last graphs in equation (13) are irreducible, as is the
graph for W2 , by definition.
We now return to the evaluation of the configuration integral,

using the method of Paper I. In this approach, all interactions
were taken with respect to an arbitrary particle (say, particle 1)
assumed to be at the origin of the coordinate system so that with
the exclusion of self-energy terms of the form f j j , equation (3)
became

QN (T ;V ) ¼Z
: : :

Z Y
1� i< j�N

(1þ f12)(1þ f13) : : : (1þ f1N ) d
3r1 d

3r2 : : : d
3rN

ð14Þ

in Paper I. Note that for N ¼ 2, we had only one term (1þ f12);
for N ¼ 3, we had (1þ f12)(1þ f13); and so on for large N.
Furthermore, one can see that the product term (1þ f23) was
missing because all interactions are taken with respect to par-
ticle 1, and f23 does not involve particle 1. Therefore, the triplet
interactions of the form f12 f13 f23 were neglected in Paper I.
Now, however, we examine their effect in x 3. The configura-
tional integral ignoring the irreducible triplet term for point-
mass particles, derived in Paper I, was

QN (T ;V ) ¼ VN 1þ �n̄T�3
� �N�1

; ð15Þ

where

� ¼ 3(Gm2)3=2 ð16Þ

and n̄ ¼ N̄ /V is the average number density of a volume V in the
ensemble. Equation (15) has a simple form for nonYpoint-mass
particles, also derived in Paper I.

3. THE PARTITION FUNCTION INCLUDING THE
IRREDUCIBLE TRIPLET INTERACTION

In the previous work we calculated the partition function in-
cluding the doublet irreducible graph ( ) and the reducible
triplet graphs in equation (12). The earlier analysis neglected
terms of the form f12 f13 f23 ( ), and higher order irreducible
terms, which represent the simultaneous pairwise interaction of
three or more particles. The physical reason for neglecting the
( ) terms was that close configurations of three particles occur
infrequently and, whether bound or not, are unstable and last for
relatively short times. Besides, they are more complicated to cal-
culate. Now that we are able to calculate these terms, we can ex-
plore their influence and the accuracy of our previous assumptions.
The inclusion of the irreducible triplet term ( ) modifies

the partition function and hence all the other thermodynamic
quantities, as well as the distribution function. Thus, to calcu-
late this more exact partition function, we first evaluate the triplet
term,

I ¼
Z Z Z

f12 f13 f23 d
3r1 d

3r2 d
3r3: ð17Þ

3.1. Evaluation of the Triplet Term

Let particle 1 be at the origin of the coordinate system (Fig. 1),
which is also the center of a spherical cell of radius R1. If the
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coordinates of particle 2 are (r; �2; �2) and of particle 3 are
(s; �3; �3) and the vector displacement between them is t, thenwe
can write for any temperature T

f12 ¼
Gm2

T r12j j ¼
Gm2

Tr
; ð18Þ

f13 ¼
Gm2

T r13j j
¼ Gm2

Ts
; ð19Þ

f23 ¼
Gm2

T r23j j ¼
Gm2

Tt
: ð20Þ

Note that for simplicity we do not introduce the softening pa-
rameter, �, into the gravitational potential here, because Paper I
showed that the relevant integrals converge uniformly as � ! 0,
and in any case � produces a small physical effect if � /R1P 0:5.

Therefore,

Z Z Z
f12 f13 f23 d

3r1 d
3r2 d

3r3

¼V

Z Z
f12 f13 f23 d

3r12 d
3r13

¼V

Z Z �
Gm2

T

�3
1

rst
d3s d3r: ð21Þ

The corresponding volume element is

d3r12 d
3r13 ¼ d3r d3s ¼ s2 ds sin �3 d�3 d�3r

2 dr sin �2 d�2 d�2:

ð22Þ

In addition,

t2 ¼ r2 þ s2 � 2rs cos �; ð23Þ

where � ¼ �3 � �2 is the angle between r and s given by

cos � ¼ cos �3 cos �2 þ sin �3 sin �2 cos (�3 � �2): ð24Þ

Substitution of equation (23) into equation (21) gives

Z Z Z
f12 f13 f23 d

3r1 d
3r2 d

3r3 ¼ V
Gm2

T

� �3

;

Z
V

Z
V

d3r d3s

rs r2 þ s2 � 2rs cos �ð Þ1=2
:

ð25Þ

The denominator of equation (25) can be written in terms of
Legendre polynomials,

1

r2 þ s2 � 2rs cos �ð Þ1=2
¼

P1
n¼0

Pn(cos �)
sn

rnþ1
; for s < r;

P1
n¼0

Pn(cos �)
rn

snþ1
; for s > r:

8>><
>>:

ð26Þ

Using the addition theorem, we can write this in terms of asso-
ciated Legendre polynomials,

Pn(cos �) ¼ Pn(cos �3)Pn(cos �2)

þ 2
Xn
m¼1

(n� m)!

(nþ m)!
Pm
n (cos �3)P

m
n (cos �2) cos (�3 � �2):

ð27Þ

To simplify the calculations, we consider particle 2 to be at the
polar axis, such that �2 ¼ 0, so that � ¼ �3. We have two cases,
s < r and s > r, both lying within the sphere of radius R1.

If we consider the case s < r, then the limits of integration for
s are from 0 to r and for r are from 0 to R1, so that equation (25)
becomesZ Z Z

f12 f13 f23 d
3r1 d

3r2 d
3r3 ¼

V
Gm2

T

� �3Z 2�

0

Z �

0

Z r

0

s ds sin �3 d�3 d�3

r2 þ s2 � 2rs cos �1ð Þ1=2

;

Z 2�

0

Z �

0

Z R1

0

r2 dr sin �2 d�2 d�2

r
: ð28Þ

First, we integrate over all the angles using equations (26) and
(27), and then integrate over s and finally integrate over r to
obtain

Z Z Z
f12 f13 f23 d

3r1 d
3r2 d

3r3 ¼
8�2V

3

Gm2

T

� �3

R3
1

¼ 3

2
V 3 Gm2

TR1

� �3

: ð29Þ

It can similarly be shown that the case s > r leads to the same
result as equation (29). Incorporating equation (16) gives

Z Z Z
f12 f13 f23 d

3r1 d
3r2 d

3r3 ¼
4

9
V 3 �n̄T�3

� �3
: ð30Þ

Fig. 1.—Coordinate system for the irreducible triplet term.
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This simple result for a complicated integral allows us to
readily determine the contribution of ( ) terms to the parti-
tion function.

3.2. Evaluation of the Configuration Integral

For a triplet, theminimum requirement is three interacting par-
ticles, so it will not influence the expressions for Q1(T ;V ) and
Q2(T ;V ). However, forN ¼ 3, we have a single irreducible trip-
let contribution, so that

Q3(T ;V ) ¼
Z Z Z

(1þ f12)(1þ f13) d
3r1 d

3r2 d
3r3

þ
Z Z Z

f12 f13 f23 d
3r1 d

3r2 d
3r3: ð31Þ

In terms of cluster diagrams, equation (31) can be written as

ð32Þ

It may be noted from equation (32) that we have followed our
earlier analysis by taking all interactions with respect to par-
ticle 1, including the triplet term of the form ( ) in which
particles 2 and 3 are also connected through particle 1. Since
particle 1 could be any of the N particles, this produces no loss
of generality.

Using equations (15) and (30), we therefore have

Q3 T ;Vð Þ ¼ V 3 1þ �n̄T�3
� �2þ1 ;

4

9
�n̄T�3
� �3� �

: ð33Þ

Now, for N ¼ 4, there will be a total of four irreducible iso-
lated triplets (i.e., unconnected to other particles). In fact, for
any N, the number of irreducible isolated triplets is given by
N (N � 1)(N � 2)/6. However, since our analysis requires that
particle 1 should necessarily be involved in all the interactions,
we have only three such triplets for N ¼ 4. Consequently,

Q4(T ;V ) ¼
Z Z Z Z

(1þ f12)(1þ f13)

; (1þ f14) d
3r1 d

3r2 d
3r3 d

3r4

þ 3

Z Z Z Z
f12 f13 f23 d

3r1 d
3r2 d

3r3 d
3r4: ð34Þ

In terms of cluster diagrams, this becomes

ð35Þ

Note that each unconnected dot, on integration, gives a factor
of V. For N ¼ 5, 6, 7, : : : , we have 6, 10, 15, : : : isolated
irreducible triplets, so that, in general, we have only (N � 1)(N�
2) /2 (N � 2) such triplets.

The general configuration integral for N � 3 incorporating
the triplet terms therefore takes the form

QN T ;Vð Þ ¼

VN 1þ �n̄T�3
� �N�1þ N � 1ð Þ N � 2ð Þ

2

4

9
�n̄T�3
� �3� �

: ð36Þ

As a result, the partition function, equation (1), is calculated
for N � 3 to be

ZN ¼ VN

N !

2�mT

�2

� �3N=2

; 1þ �n̄T�3
� �N�1þ N � 1ð Þ N � 2ð Þ

2

4

9
�n̄T�3
� �3� �

:

ð37Þ

The second term on the right-hand side of equation (37) arises
as a result of the inclusion of irreducible triplet interactions. It
is trivial to see that the above equation reduces to the same form
of the partition function as was obtained previously in Paper I if
the triplet contributions are neglected. We see that for �n̄T�3 < 1,
the first term in equation (37) dominates, as it does for large N
even if �n̄T�3 > 1.

4. THERMODYNAMIC FUNCTIONS

It is clear that the partition function is modified by the higher
order terms. Since all the thermodynamic quantities are derivable
from the partition function, these will be modified accordingly
for N � 3.
We start with the free energy, since it is the fundamental quan-

tity for evaluating other thermodynamic quantities,

F ¼� T ln ZN T ;Vð Þ

¼ NT ln
NT�3=2

V

� �
� NT ln 1þ �n̄T�3

� �

� 3

2
NT ln

2�m

�2

� �
� T ln 1þ aN �n̄T�3ð Þ3

1þ �n̄T�3ð ÞN

" #
� NT ;

ð38Þ

where

aN � 2 N � 1ð Þ N � 2ð Þ=9: ð39Þ

The entropy of the system can be derived from the free energy
as

S ¼� @F

@T

� �
N ;V

¼� N ln
NT�3=2

V

� �
þ N ln 1þ �n̄T�3

� �

þ ln 1þ aN �n̄T�3ð Þ3

1þ �n̄T�3ð ÞN

" #
� 3N

�n̄T�3

1þ �n̄T�3

þ 5

2
N þ 3

2
N ln

2�m

�2

� �

þ 3aN �n̄T�3ð Þ3

1þ �n̄T�3ð Þ
N �n̄T�3ð Þ � 3 1þ �n̄T�3ð Þ
aN �n̄T�3ð Þ3þ 1þ �n̄T�3ð ÞN

" #
: ð40Þ
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The internal energy has the form

U ¼ F þ TS ¼ 3

2
NT 1� 2btð Þ: ð41Þ

Here, the irreducible triplet clustering parameter bt is defined
for N � 3 by

bt ¼ b
N þ 3aNb

2(1� b)N�3

N þ aNNb3(1� b)N�3

� �
; ð42Þ

b ¼ �n̄T�3

1þ �n̄T�3
: ð43Þ

The form of bt as given by expression (42) incorporates the
effects of triplet interactions. The values of bt satisfy the same
general boundary conditions as b. For example, bt ! 0 as
b ! 0, and bt ! 1 as b ! 1, which implies that bt is simply a
modified form of b in which the modification arises from the
triplet terms of the form ( ). Figure 2 shows that the inclusion
of irreducible triplets has a small effect on b just for N ¼ 3. For
larger values of N � 5, the distinction between b and bt is
smaller. Since both b and bt are measures of gravitational at-
traction, we can infer that the clustering may not be significantly
affected by the inclusion of the triplet interactions, especially as
b ! 1 and for large N. Pressure can be calculated from

P ¼ � @F

@V

� �
N ;T

¼ NT

V
1� btð Þ: ð44Þ

The chemical potential can be evaluated by using the free
energy and pressure equation of state from

N�

T
¼ F

T
þ PV

T
ð45Þ

to give

eN�=T ¼ N̄

V
T�3=2

� �
2�m

�2

� ��3N=2
1� bð ÞN

1þ aNb3 1� bð ÞN�3
h i e�Nbt :

ð46Þ

Another important property of a system is the behavior of the
specific heat as a function of the clustering parameter b, which
determines the stability of the system. By definition,

CV ¼ 1

N

@U

@T

� �
N ;V

: ð47Þ

Using equation (42),

CV ¼ 3

2

�
1� 2bt � 2T

@bt
@T

�
: ð48Þ

After some algebra, we obtain

CV ¼ 3

2
1� 2b	1 þ 6b(1� b)	2½ �; ð49Þ

where 	1 and 	2 are defined as

	1 ¼
1þ 3N�1(1� b)b�1


1þ (1� b)

; ð50Þ

	2 ¼
1� 2(1� b)b�1N2 þ 3N (4þ b)� 9½ �N�2


1þ (1� b)
½ �2
; ð51Þ

with 
 given by


(N ; b) ¼ aNb
3(1� b)N�4; for N � 3;

0; for N < 3:

(
ð52Þ

Figure 3 illustrates 
(N ; b) as a function of b for given values
of the total number of particles N. Figure 4 shows the behavior
of the specific heat given by equation (49) (solid line) as a func-
tion of b. Note that here we are considering an ensemble of sys-
tems in which each system has N particles. The result of Saslaw
& Sheth (1993) without irreducible triplet contributions is also
plotted (dotted line), for comparison. For N ¼ 1 and N ¼ 2, the
two curves coincide, since there are no triplets. For N ¼ 3, there
is only one triplet, and the two curves overlap for lower values
of b, but for 0:4 � b � 1, the triplets lower the specific heat. As

Fig. 3.—Variation of 
 as a function of b for various values of N. For larger
values of N, 
 tends to zero.

Fig. 2.—Comparison of bt and b for fixed values of N.
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N increases, the decrease in the specific heat becomes apprecia-
ble for intermediate values of b for which triplets are the impor-
tant clusters in the system. For N k 50, the two curves nearly
coincide, since larger clusters dominate. This decrease in spe-
cific heat for lower values of N and intermediate values of b is
due to the contribution of irreducible triplets. As discussed ear-
lier (Saslaw & Sheth 1993; Saslaw 2000), the effect of triplets in
general is to increase gravitational binding and to decrease the
specific heat. For lower values of N, there is an appreciable num-
ber of triplets compared to the doublets, so that the effect is
enhanced. For large values of N and lower values of bP 1/3,

the doublets still remain as the dominant components, so that
the effect is less significant. However, for b ¼ 0, i.e., when the
galaxies are uncorrelated, the system behaves as a perfect mon-
atomic gas (CV ¼ 3/2), as before. Similarly, the value of CV ¼
�3/2 as b ! 1 results from the system becoming virialized on all
scales and is not much affected by irreducible triplets. Thus, we
see that the behavior of specific heat as given by equation (49)
is understandable and agrees with the earlier results (Saslaw &
Sheth 1993).
Two other thermodynamic properties, important for the stabil-

ity of the systems, are just stated here. These are the compress-

Fig. 4.—Comparisons of specific heat. The solid line is our result from eq. (49), and the dashed line is taken from Saslaw& Sheth (1993). Note that forN ¼ 1 and 2 the
two curves coincide, as expected, and for larger values of N the agreement becomes closer.
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ibility at constant temperature, �T, and the coefficient of thermal
expansion, �:

� ¼ 1

V

@V

@T

� �
P;N

¼ 1

T

1þ 3b

1� b

� �(
1þ 1� 3=Nð Þ 1þ 3bð Þ�1

b 4N � 1ð Þ � 11½ �

1þ 1� 3=Nð Þ


þ 4 1� bð Þ 3=N � bð Þ

1þ 3bð Þ 1þ 1� bð Þ
½ �

)
; ð53Þ

�T ¼� 1

V

@V

@P

� �
T ;N

¼ V

NT 1� bð Þ2

;

(
1þ 1� bð Þ
þ b N �1ð Þ� 2½ � 1þ 1� bð Þ
½ � 1� 3=Nð Þ


1þ 1� 3=Nð Þ 1� bð Þ
½ �2

þ 3=N � bð Þ 1� bð Þ

1þ 1� 3=Nð Þ


)
: ð54Þ

Fig. 5.—Distribution function fN (V ) and fV (N ) for a system that includes the triplet interactions (solid lines) compared with the case excluding irreducible triplets
(dashed lines).
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The specific heat at constant pressure is related to above quan-
tities by

CP ¼ CV þ TV�2

N�T

: ð55Þ

Writing these results in this rather elegant form makes it clear
that for small values of 
, implied either by large N or by small
b or by b nearly unity, the quantities in curly brackets are nearly
unity and �, �T, and CP all reduce to their values without irre-
ducible triplets.

5. DISTRIBUTION FUNCTIONS

The galaxy distribution function provides useful insights into
the observed galaxy clustering, as well as into results of N-body
simulations. Hence, we examine how irreducible triplets con-
tribute to it. The distribution function f (N ) is derived from its
general relation to the grand canonical partition function ZG, the
chemical potential �, and the sum over energy states ZN ,

f (N ) ¼ eN�=TZN (T ;V )

ZG(T ;V ; �)
; ð56Þ

where ZG is related to the equation of state by

ln ZG ¼ PV

T
¼ N̄ (1� bt); ð57Þ

similar to the result in Paper I. From equations (42)Y(46), for any
particular value of N, the distribution function becomes (note
that here N is not the total number of particles in the system)

f Nð Þ ¼
N̄ 1� bð Þ N̄ 1� bð Þ þ Nb

� �N�1þN 3 N̄
� �N�3

1� bð Þ

N ! 1þ 1� bð Þ
½ �

; e�Nbt�N̄ 1�btð Þ: ð58Þ

Figure 5 shows the distribution function fN (V ) for fixed val-
ues of N and b. One can see that for smaller values of N, the
two graphs differ. The peak corresponding to the distribution
function of equation (58) is higher and slightly shifted toward
lower r-values. As N increases, this distinction begins to disap-
pear, and even for not so high values of N, the two graphs over-
lap. Figure 5 also shows the distribution function fV (N ) for
N̄ ¼ 10 and different values of b. For b ¼ 0:1, indicating neg-
ligible correlations, fV (N) is not affected by the inclusion of trip-
lets, since this system behaves almost as a perfect gas. As b
increases (b ¼ 0:6), the inclusion of irreducible triplets increases
the peak of the distribution and shifts it slightly toward lower N.
As b increases further (b ¼ 0:9), the effects of irreducible trip-
lets diminish. Equations (42) and (52) also show how irreducible
triplets modify the void distribution f0(V ).
We next examine the effects of irreducible triplets on the com-

parison with the recently observed galaxy distribution functions
in Figures 2d and 2e of Sivakoff & Saslaw (2005) taken from the
2MASS data. This is important, since the observations have a
slightly higher peak than the theoretical distribution, and we
want to know if this was caused by neglecting the irreducible
triplet term. Figure 6 shows that the distribution functions of
equation (58) agree very closely with the observations and with
the previous fV (N ) without the irreducible triplets, particularly
for larger values of N and N̄ . After examining a wide range of
values of N̄ , N, and b for a number of different cases, we con-
clude that the distribution function is not significantly affected by
the inclusion of triplet terms of the form ( ), which confirms the
self-consistency of the earlier theory (Paper I). Therefore, the
slightly higher observed peaks have a different origin.

6. DISCUSSION

We have rederived the statistical mechanics and thermody-
namics of the gravitational cosmological many-body problem
more accurately by including terms for irreducible triplets in the
partition function. These represent the close interactions of three
galaxies through their pairwise gravitational forces. They have
the form f12 f13 f23, indicated by the cluster diagrams ( ). These
irreducible triplets also contribute the term �123 to the three-point
correlation function. This �123 term is normally neglected in the
BBGKY hierarchy of correlation functions, because its nonlin-
ear calculation is usually mathematically very difficult. Although
the irreducible triplets are not trivial to calculate for the partition
function, we have done this and shown that their effects are in-
deed small.
These terms might have turned out to be important, as in some

cases of imperfect gases (e.g., Graben & Present 1962). Their
comparative unimportance here results partly from the relatively
small number of permanent close triple groups in systems with

Fig. 6.—Comparison of the observed galaxy distribution function taken from
the 2MASS survey (histograms; Figs. 2d and 2e of Sivakoff & Saslaw 2005)with
and without the irreducible triplet contributions.
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large N. This, in turn, is partly a consequence of the dynamical
instability of the gravitational three-body problem. To estimate
this, consider f3(V ) from equation (58), which we may write,
without the triplet term for simplicity (i.e., for aN ¼ 0), as

f3(x) ¼
1

6
x xþ 3bð Þ2e�x�3b; ð59Þ

where

x � 4

3
�(1� b)n̄r3: ð60Þ

To find the radius r3max of the most probable volume in which
a group of three galaxies is found, we solve d ln f3(x) /dx ¼ 0 to
obtain

r33max ¼
9

8�
1þ 1þ 4b

3 1� bð Þ2

" #( )1=2

n̄�1: ð61Þ

This volume exceeds the most probable volume for finding
two galaxies by the ratio

r33max

r32max

¼ 3

2

1þ 1þ 4b=3(1� b)2
� �	 
1=2

1þ 1þ 2b=(1� b)2
� �	 
1=2

: ð62Þ

This ratio ranges between 3/2 for small values of b and 3/2ð Þ1=2
as b ! 1. Therefore, there will, on average, be fewer volumes
containing three galaxies in a typical given region than there are
volumes containing two galaxies. More generally, the ratio of the
amplitudes f3(V ) /f2(V ) in any volume V is

f3(V )

f2(V )
¼ 1

3
n̄V 1� bð Þ þ 3b)½ �e�b: ð63Þ

As b ! 1, any volume with N̄ < (1� b)�1 galaxies is less
likely to contain three than two galaxies. Volumes with N̄ (1�
b) � 1 will more often contain three galaxies, but the number of
such volumes will be fewer, proportional to (1� b), and within
them the average separation of the three galaxies will be greater,
leading to a smaller contribution of close triplets to the partition
function.Moreover, the orbits of these close irreducible triplets are

dynamically unstable (e.g., Saslaw et al. 1974), both intrinsically
and to external perturbations on timescales typically between 1
and 100 crossing times of their average orbital separation. For ir-
reducible triplets, the orbital separations and timescales are gen-
erally smaller than for other triplets. All these effects reduce the
contribution of irreducible triplets to the partition function.

Another reason why irreducible triplet configurations are less
important for this cosmological many-body system than for some
imperfect gases or condensedmatter systems is that the fundamen-
tal gravitational interaction is always pairwise, rather than directly
dependent on the positions of three or more particles, as in other
cases. This considerably simplifies the configuration integrals.

A result of this simplification is that some of the thermo-
dynamic properties such as internal energy and pressure for the
cosmological case retain the same functional form as they have
without irreducible triplets. Only their value of b is modified
slightly, and this modification becomes small in the three limits
b ! 0, b ! 1, and N ! 1, as seen in equation (42). The small
contribution of this modification may also be seen in Figure 2.

For the specific heat and the f (N ) distribution functions,
however, the modifications can be greater in some regimes. In-
cluding irreducible triplets lowers CV for 3PN P 20, particu-
larly if 0:33P bP 0:6, since those systems typically contain a
large relative number of three-particle groups. The irreducible
triplets lower CV, since their internal gravitational energies con-
tribute negatively to it, and for N P 5 they slightly reduce the
value of b at which CV becomes negative, thus promoting in-
stabilities. For the distribution function, equation (58) shows that
its form is modified slightly by replacing b in the exponential
by bt and adding extra terms for the normalization. Fits to the
2MASS galaxy catalog are within the noise, as are the fits with-
out the irreducible triplet terms, so they do not significantly alter
the close agreement with observations of galaxy clustering. We
have also shown how the coefficient of thermal expansion, the
isothermal compressibility, and the specific heat at constant pres-
sure are modified by the irreducible triplet configurations.
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aration of the manuscript.
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