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ABSTRACT

We show that the measurement of the baryonic acoustic oscillations in large high-redshift galaxy surveys
offers a precision route to the measurement of dark energy. The cosmic microwave background provides the
scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding
the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to
probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to
z ¼ 3 and report errors on cosmography while marginalizing over a large number of cosmological parame-
ters, including a time-dependent equation of state. With redshift surveys combined with cosmic microwave
background satellite data, we achieve errors of 0.037 on �X, 0.10 on wðz ¼ 0:8Þ, and 0.28 on dw(z)/dz for the
cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss
the dependence of performance on redshift, survey conditions, and the fiducial model. We find results that
are competitive with the performance of future Type Ia supernova surveys. We conclude that redshift surveys
offer a promising independent route to the measurement of dark energy.

Subject headings: cosmological parameters — cosmology: theory — distance scale —
large-scale structure of universe — methods: statistical

On-line material: color figures

1. INTRODUCTION

Recent observations of distant Type Ia supernovae (SNe
Ia) have reached the startling conclusion that the expansion
of the universe is accelerating (Perlmutter et al. 1999; Riess
et al. 1998, 2001; Tonry et al. 2003). Under the premise of
Friedmann equations, this implies the existence of an energy
component, christened dark energy, with negative pressure
(Ratra & Peebles 1988; Frieman et al. 1995). The detailed
characterization of the accelerated expansion and its cause
is now one of the main subjects of cosmology. Dark energy
presently constitutes about 2

3 of the total energy density of
the universe, and its physical property is often parameter-
ized by the ratio of pressure to density, that is, the equation
of state (Steinhardt 1997; Turner & White 1997). A cosmo-
logical constant (for a review see Carroll, Press, & Turner
1992) has a constant equation of state of �1, while general
quintessence models (Caldwell et al. 1998) and other theo-
ries (Zlatev, Wang, & Steinhardt 1999; Bucher & Spergel
1999; Armendariz-Picon, Mukhanov, & Steinhardt 2000;
Boyle, Caldwell, & Kamionkowski 2002; Gu & Hwang
2001; Kasuya 2001; Bilic, Tupper, & Viollier 2002; Deffayet,
Dvali, & Gabadadze 2002; Freese & Lewis 2002) typically
allow equations of state with a redshift dependence. Mea-
suring the time dependence of the equation of state, as well
as its present density, is an essential step in identifying
the physical origin of dark energy (Hui, Stebbins, &
Burles 1999; Cooray & Huterer 1999; Huterer & Turner
1999, 2001; Newman & Davis 2000; Haiman, Mohr, &
Holder 2001; Maor, Brustein, & Steinhardt 2001; Wang &
Garnavich 2001; Kujat et al. 2002; Maor et al. 2002;
Newman et al. 2002; Weller & Albrecht 2002; Frieman et al.
2003; Linder & Huterer 2003). Because of the inertness and
the relative smoothness of this energy component, as com-
monly believed in the standard pictures of dark energy, the
best cosmological probe of dark energy is the expansion

history of the universe, measured by the Hubble parameter
and angular diameter distance.

In this paper we demonstrate that the Hubble parameter
H(z) and angular diameter distance DA(z) can be measured
to excellent precision by using the baryonic acoustic oscilla-
tions imprinted in the large-scale structure of galaxies. We
are familiar with this signature as the now-famous Doppler
peaks in the anisotropies of the cosmic microwave back-
ground (CMB; Peebles & Yu 1970; Bond & Efstathiou
1984; Miller et al. 1999; de Bernardis et al. 2000; Hanany
et al. 2000; Halverson et al. 2002; Benoı̂t et al. 2003; Bennett
et al. 2003); however, the same structure is predicted to be
present in the late-time clustering of galaxies as a series of
weak modulations in the amplitude of fluctuations as a
function of scale (Peebles & Yu 1970; Bond & Efstathiou
1984; Holtzman 1989; Hu & Sugiyama 1996). The physical
scale of the oscillations is determined by the matter and
baryon densities, which can be precisely measured with
CMB anisotropy data. This calibrates the acoustic oscilla-
tions as a standard ruler (Eisenstein, Hu, & Tegmark 1998;
Eisenstein 2003). The observed length scales of oscillations
in the transverse and line-of-sight directions in a galaxy red-
shift survey then determine the angular diameter distance
DA(z) and the Hubble parameter H(z) as functions of red-
shift. As an oscillatory feature, the acoustic signature is less
susceptible to general systematic errors and distortions;
however, only large surveys map enough cosmic volume to
achieve the precision required to detect these features. In
addition, the features along the line-of-sight clustering are
on sufficiently small scales that resolving them requires an
accurate measurement of redshift, motivating the need for
spectroscopic redshift surveys. Surveys at higher redshift
are preferred so as to avoid the erasure of the oscillatory fea-
tures by nonlinear structure formation (Jain & Bertschinger
1994; Meiksin, White, & Peacock 1999; Meiksin & White
1999). Recent analyses of large surveys may be beginning to
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reveal these features (Percival et al. 2001; Miller, Nichol, &
Batuski 2001).

There have been numerous studies on how the combina-
tion of CMB anisotropy data and large-scale structure data,
either present (Scott, Silk, & White 1995; Gawiser & Silk
1998; Lange et al. 2001; Tegmark, Zaldarriaga, & Hamilton
2001; Efstathiou et al. 2002; Spergel et al. 2003) or future
(Hu, Eisenstein, & Tegmark 1998; Eisenstein et al. 1998;
Wang, Spergel, & Strauss 1999; Eisenstein, Hu, & Tegmark
1999; Popa, Burigana, & Mandolesi 2001), can constrain
cosmological parameters. These studies have considered an
increasing number of parameters and degeneracies and
build on a body of work in CMB parameter estimation
(Knox 1995; Jungman et al. 1996; Zaldarriaga, Spergel, &
Seljak 1997; Bond, Efstathiou, & Tegmark 1997). However,
most previous work on galaxy surveys has concentrated on
low redshifts and used spherically averaged power spectra.
The spherical assumption neglects the effects of redshift dis-
tortions and cosmological distortions. Including the noniso-
tropic information in the clustering of galaxies allows one to
recover these effects (Ballinger, Peacock, & Heavens 1996;
Heavens & Taylor 1997; Hatton & Cole 1999; Taylor &
Watts 2001; Matsubara & Szalay 2002, 2003).

In this paper we design large galaxy redshift surveys at
high redshift that can recover the acoustic peaks with a level
of precision that allows us to put competitive constraints on
the dark energy.We describe the constraints in terms of stat-
istical errors using a Fisher matrix treatment of the full
three-dimensional power spectra. We study galaxy surveys
at z ¼ 0:3, z � 1, and z ¼ 3 so as to have access to cosmo-
logical distortions across a wide range of cosmic history. As
our goal is to optimize survey design based on realistic stat-
istical errors, we try to be conservative in our methodology.
For example, we adopt ungenerous values for the nonlinear
scales and marginalize over a large number of cosmological
parameters. We present the predicted performance of our
baseline surveys with constraints derived forH(z) andDA(z)
and then propagate these errors to the constraints on the
dark energy parameters at our fiducial cosmology model,
�CDM. This work extends that of Blake & Glazebrook
(2003) in that we have used a full Fisher matrix formalism to
treat the cosmological constraints from large-scale struc-
ture, CMB anisotropies, and SN data simultaneously and
that we have considered time-variable equations of state. It
differs from Linder (2003a) in that it is an explicit treatment
of the survey data sets in addition to a discussion of dark
energy parameter estimation. Contemporaneously with this
paper, Hu & Haiman (2003) used a Fisher matrix technique
similar to ours to study the performance of a mid-redshift
cluster survey. The two analyses differ in numerous details.

In x 2 we discuss the details of the physics to probe dark
energy. In x 3 we present the survey condition we assume
and our Fisher information matrix methodology. We
present and discuss our results in x 4.We consider variations
in survey design and the fiducial model. We compare the
performance to an SN survey and to pure imaging surveys.

2. FROM BARYONIC OSCILLATIONS TO DARK
ENERGY

2.1. Cosmography and Dark Energy

The expansion history of the universe can be written
as the redshift z(t) as a function of time, which in turn is
completely specified by the Hubble parameter H(z) as a

function of redshift. We will probe the expansion history by
measuringH(z) and the angular diameter distanceDA(z).

The evolution of dark energy density can be described by
the present-day dark energy density �X and the equation of
state of dark energy, wX(z) (Steinhardt 1997; Turner &
White 1997), where

wX ðzÞ ¼
pX
�X

����
z

: ð1Þ

This yields an energy density as a function of redshift

�X ðzÞ ¼ �X ð0Þ exp 3

Z z

0

1þ wðzÞ
1þ z

dz

� �
: ð2Þ

Assuming a flat universe, DA(z) andH(z) are then related
to the dark energy density through

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ�X exp 3

Z z

0

1þ wðzÞ
1þ z

dz

� �s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
0

1��X

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ�X exp 3

Z z

0

1þ wðzÞ
1þ z

dz

� �s
; ð3Þ

DAðzÞ ¼
c

1þ z

Z z

0

dz

HðzÞ ; ð4Þ

where �X is the present-day dark energy fraction with
respect to the critical density and H0 ¼ h� 100 km s�1

Mpc�1, which is the present-day Hubble constant. In a gen-
eral sense,H(z) and DA(z) are the fundamental observables,
to be interpreted here as �X and w(z). The comoving sizes of
an object or a feature at redshift z in line-of-sight (rk) and
transverse (r?) directions are related to the observed sizes Dz
and Dh byH(z) andDA(z):

rk ¼
cDz

HðzÞ ; ð5Þ

r? ¼ ð1þ zÞDAðzÞD� : ð6Þ

When the true scales, rk and r?, are known, measurements
of the observed dimensions, Dz and Dh, give estimates of
H(z) and DA(z). The object is then known as a ‘‘ standard
ruler.’’ Equations (5) and (6) can be applied equally well in
Fourier space (inverted, of course).

It is well known that even if we do not know the scale of a
feature, we can still extract the product H(z)DA(z) (Alcock
& Paczynski 1979). The acoustic oscillation method pre-
sented here is not an Alcock-Paczynski method because we
do know the scale of the sound horizon.

The cosmological feature to be measured need not be an
actual object. Instead, we can use a statistical property of
structure in many realizations such as correlation length
(Ballinger et al. 1996; Matsubara & Szalay 2003). On
large scales, features in the power spectrum may be more
prominent and hence easier to use.

The equation of state w(z) can be written as a derivative
of H(z) versus redshift, which in turn is a derivative of the
angular diameter distance versus redshift (eqs. [3] and [4]). If
we seek to measure not only the mean value of w(z) but also
its slope in redshift, we are adding yet another derivative to
the process. In short, to measure the time variation of the
equation of state, we must be able to measure the second
derivative of H(z) or the third derivative of the distance-
redshift relation. As each derivative magnifies the
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measurement noise in its parent function, we require
enormous precision to proceed. In the context of galaxy
surveys, this will drive us to require large volumes.

2.2. Baryonic Acoustic Oscillations in theMatter
Power Spectrum

Baryonic acoustic oscillations are a generic feature of the
power spectrum of large-scale structure and an excellent
candidate for the standard ruler test. Prior to recombina-
tion, the baryons in the universe are locked to photons of
the cosmic microwave background, and the photon pressure
interacting against the gravitational instability produces a
series of sound waves in the plasma. After recombination,
the baryons and photons separate, but the effects of the
acoustic oscillations remain imprinted in their spatial struc-
ture of the baryons and eventually the dark matter (Peebles
& Yu 1970; Holtzman 1989; Hu & Sugiyama 1996;
Eisenstein & Hu 1998). The resulting power spectrum is
shown in Figure 1.

The physical length scale of the acoustic oscillations
depends on the sound horizon of the universe at the epoch
of recombination. The sound horizon is the comoving dis-
tance a sound wave can travel before recombination and
depends simply on the baryon and matter densities. The rel-
ative heights of the acoustic peaks in the CMB anisotropy
power spectra measure these densities to excellent accuracy,
thereby producing an accurate measurement of the sound
horizon (Eisenstein et al. 1998; Eisenstein 2003).

While the matter power spectrum is simply a product of
the spectrum of primordial fluctuations and the modifica-
tion of those fluctuations in later epochs, notably the radia-
tion domination era and recombination, our observations
of this power spectrum are complicated by the biases of gal-
axy clustering, the distortions from peculiar velocities, and
the errors induced from reconstructing distances with the
wrong cosmology. The latter two effects break the intrinsic

statistical isotropy of the clustering of matter and introduce
variations that depend on the angle of the wavevector to the
line of sight.

In the absence of massive neutrinos (Bond & Szalay
1983), linear perturbation theory fixes the shape of the mat-
ter power spectrum in comoving coordinates and changes
only the amplitude as the structure evolves. The growth
function G(z) rescales the amplitude of the fixed matter
power spectrum to account for the growth of structure from
the recombination to a redshift z. The growth function does
depend on the details of dark energy. However, the subtle
changes in the amplitude of the matter power spectrum are
easily confused in galaxy redshift surveys with evolution in
the bias of galaxies. While bias can be estimated from red-
shift distortions, recovering it to the 1% accuracy required
for interesting constraints on dark energy is unlikely, espe-
cially in light of the systematic uncertainties of poorly
known scale dependencies of the redshift distortion.

In principle, galaxy clustering bias could be arbitrary
(Dekel & Lahav 1999); however, under the assumptions of
local bias and Gaussian statistics for the density field, the
bias on large scales should be independent of scale in the
correlation function (Coles 1993; Scherrer & Weinberg
1998; Meiksin et al. 1999; Coles, Melott, & Munshi 1999).
In the power spectrum, this appears as a constant multipli-
cative bias plus a constant additive offset (Seljak 2000).
Moreover, even if the bias deviates from scale independence
on linear or quasi-linear scales, it is very implausible for it to
introduce oscillations in Fourier space on the acoustic
scales, as this would correspond to a preferred length scale
in real space of enormous size (e30Mpc).

Redshift distortions are an angle-dependent distortion
in power caused by the peculiar velocities of galaxies
(Hamilton 1998 and references therein). On the largest
scales, these distortions follow a simple form (Kaiser 1987)
in which the distortion is an angle-dependent, multiplicative
change in power.We follow this prescription. In reality, red-
shift distortions are nonlinear, including the finger-of-God
effects on small scales. However, these deviations have no
large preferred length scale and will not disturb analysis of
the acoustic oscillations.

Whereas the linear theory redshift distortions are an
angle-dependent modulation in the power spectrum ampli-
tude, the cosmological distortion resulting from an incor-
rect mapping of observed separations to true separations
produces a distortion in scale. Spherical features in power
become ellipsoids under the false cosmology. Were the
power spectrum a simple power law, the cosmological and
redshift distortions would be indistinguishable in their
quadrupole signatures and difficult to separate overall. For-
tunately, the matter power spectrum is not a simple power
law and the slow rollover in the power lifts some of the
degeneracy between the two distortions (Ballinger et al.
1996; Matsubara & Szalay 2003). However, strong features
such as baryonic acoustic oscillations are far more powerful
at separating the two because, with a rapidly varying
function, the difference between dilating the scale and
modulating the amplitude is very stark.

Unfortunately, the use of baryonic oscillations as a stan-
dard ruler to deriveDA(z) andH(z) is not always straightfor-
ward. The nonlinear gravitational growth of perturbation
in the large-scale structure erases the primordial features
on smaller scales (large wavenumbers). This occurs when
perturbations on a given scale become of order unity in

Fig. 1.—Linear power spectrum in two different cosmological models,
�m ¼ 0:35, h ¼ 0:70, �b ¼ 0:04 and �m ¼ 0:25, h ¼ 0:65, �b ¼ 0:05. Each
power spectrum has been divided by the zero-baryon power spectrum for
that �m and h. The series of acoustic oscillations is clearly seen. Lines at the
bottom show the nonlinear scale, shortward of which the acoustic oscilla-
tions are washed out, as a function of redshift. The scales probed by the
WMAP and Planck satellite measurements of primordial anisotropy are
also shown. The error bars show the spherically averaged band power
measurements from the z ¼ 3 survey we present in x 3.1. [See the electronic
edition of the Journal for a color version of this figure.]
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amplitude, leading to nonlinear coupling between Fourier
modes. The obscuration by nonlinearity moves to a larger
scale as the universe evolves, and today the scale corre-
sponds to wavelengths of about 60 h�1 Mpc, enough to wipe
out all but the first and a part of the second of the acoustic
oscillations (Meiksin et al. 1999). At higher redshift, the
process is less advanced, and we can recover the primordial
signals on smaller scales, including the full series of acoustic
oscillations. For example, at z ¼ 3, we should be able to
recover primordial information to roughly 12 h�1 Mpc (a
factor of 2 smaller than what can be found in the primary
anisotropies of the microwave background), which means
that many acoustic oscillations can be preserved outside of
the nonlinearity region. In practice, we will be limited to
about four peaks because Silk damping makes the higher
harmonics smaller than our expected power spectrum mea-
surements. Figure 1 shows the nonlinear scale as a function
of redshift, as well as the scales probed by the CMB primary
anisotropies as measured by the WMAP and Planck satel-
lites. While low-redshift surveys such as the Sloan Digital
Sky Survey (SDSS; York et al. 2000) are much more
restricted by the nonlinearity of clustering, they do provide
a valuable data point at an epoch where the dark energy is
largest.

It is worth comparing the measurements from future red-
shift surveys to those inferred from the observations of SNe
Ia (Riess et al. 1998, 2001; Perlmutter et al. 1999; Tonry
et al. 2003). The SN surveys measure the luminosity distance
as a function of redshift, which in standard cosmologies is
equivalent to the angular diameter distance. While this
requires an additional derivative to extract w(z) relative to
measures of H(z), future SN programs such as the SNAP
satellite could achieve extremely good precision on distances
at redshifts below 1.7. While the cosmological implications
of low-redshift acoustic oscillations and SN distances are
partially degenerate, the systematic errors will be completely
different.

In summary, the baryon acoustic oscillations form a stan-
dard ruler that can bemeasured through galaxy redshift sur-
veys to yield H(z) and DA(z) at a range of redshifts. The
scale of the acoustic oscillations is expected to be very
robust to nonlinear gravitational clustering, galaxy biasing,
and redshift distortions, making this a potentially clean
probe of cosmography. If we can show that the distance
measurements can be made to sufficient precision, then
acoustic oscillations will offer a new and independent path
to the quantification of dark energy.

3. METHODOLOGY

In this section we present the methodology of constrain-
ing the dark energy through distance measurements
derived from surveys of galaxy clustering. To probe the
time evolution of the dark energy, we need galaxy power
spectra at a variety of redshifts. We design surveys at six
different redshift bins, ranging from 0.3 to 3. We then
present our methodology for computing the statistical
errors from these surveys and from our ancillary data sets.
We do this using a Fisher matrix formalism in a
parameterized cosmological model.

3.1. Statistical Error on the Power Spectrum

To estimate errors on DA(z) and H(z), we begin with the
errors on the power spectrum that result from a galaxy sur-

vey. Under Gaussian approximations, the statistical errors
are a combination of the limitations of the finite volume of
the survey and the incomplete sampling of the underlying
density field. These are known as sample variance and shot
noise, respectively. At a single wavevector k, the intrinsic
statistical error associated with power is the sum of the
power and shot noise (Feldman, Kaiser, & Peacock 1994;
Tegmark 1997)

�P

P
¼ Pþ 1=n

P
: ð7Þ

Here 1/n is a white shot noise from the Poisson sampling of
the density field assuming that the comoving number den-
sity n is constant in position. If the shot-noise term exceeds
the true power, that is, when nP is less than unity, then shot
noise will significantly compromise the measurement. Note
that nP depends on wavenumber.

However, when the survey volume is finite, the power at
nearby wavevectors is highly correlated, and one can think
of discretizing the Fourier modes of the density field into
cells in Fourier space whose volume is (2�)3/Vsurvey, where
Vsurvey is the comoving survey volume. Neglecting boundary
effects, the statistical power of the survey is well approxi-
mated by treating these cells as independent (Tegmark
1997). If the survey volume is large enough that the discreti-
zation scale is small compared to the regions of wavevector
space over which the power spectrum is constant, then we
can estimate the band power as averaged over a finite vol-
ume in Fourier space. We parameterize this by the wave-
number range Dk and the range Dl of the cosine of the angle
between the wavevector and the line of sight. The volume in
Fourier space is simply 2�k2DkDl and the number of modes
is 2�k2DkDlVsurvey/(2�)

3. However, because the density
field is real valued, the Fourier modes k and �k are not
independent, which reduces the number of independent
modes by a factor of 2. The fractional error on the band
power is then (Feldman et al. 1994; Tegmark 1997)

�P

P
¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Vsurveyk2DkDl

s
1þ nP

nP

� �
; ð8Þ

where P is the average comoving band power. This frac-
tional error on power spectrum (eq. [8]) enters in the Fisher
matrix and will be propagated to the errors on parameters
that we want to calculate.

3.2. The Fisher InformationMatrix for Galaxy
Redshift Surveys

Given the uncertainties of our observations, we now want
to propagate these errors to compute the precision of con-
straints on cosmological parameters. The Fisher informa-
tion matrix provides a useful method for doing this (for a
review see Tegmark, Taylor, & Heavens 1997). The method
takes as input a set of observables and a parameterized theo-
retical model to predict those observables. We denote the
parameters as p1; . . . ; pN . The Fisher information matrix
incorporates the likelihood function of the observables to
yield the minimum possible errors on an unbiased estimator
of a given parameter, given that the true values of the
parameters are those of a so-called fiducial model. Mathe-
matically, these minimum errors are simply the square roots
of the diagonal elements of the inverse of the Fisher matrix.
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Assuming the likelihood function for the band powers of
a galaxy redshift survey to be Gaussian, the Fisher matrix
can be approximated as (Tegmark 1997)

Fij ¼
Z kmax

kmin

@ lnPðkÞ
@pi

@ lnPðkÞ
@pj

VeffðkÞ
dk

2ð2�Þ3

¼
Z 1

�1

Z kmax

kmin

@ lnPðk;lÞ
@pi

@ lnPðk;lÞ
@pj

Veffðk;lÞ
2�k2 dk dl

2ð2�Þ3
;

ð9Þ

where the derivatives are evaluated at the parameter values
of the fiducial model and Veff is the effective volume of the
survey, given as

Veffðk;lÞ ¼
Z

nðrÞPðk;lÞ
nðrÞPðk;lÞþ1

� �2
dr¼ nPðk;lÞ

nPðk;lÞþ1

� �2
Vsurvey ;

ð10Þ

where the last equality holds only if the comoving number
density n is constant in position. Here l¼ kx r̂r=k, where r̂r is
the unit vector along the line of sight and k is the wavevector
with norm k¼ kj j. As a result of azimuthal symmetry
around the line of sight, the power spectrum PðkÞ depends
only on k and l, but of course it has an implicit dependence
on the cosmological parameters pi. Equations (9) and (10)
are not fully general, as we have assumed a flat-sky approxi-
mation in which the survey box is imagined to be far from
the observer. Given that the clustering scales of interest will
subtend small angles on the sky in all of our designed
surveys, this is an appropriate approximation.

We have not included information from all wavenumbers
in our equation (9). Wavenumbers smaller than kmin or
larger than kmax have been dropped. We use kmax to exclude
information from the nonlinear regime, where our linear
power spectra are inaccurate. We adopt conservative values
for kmax by requiring �ðRÞ ¼ 0:5 at a corresponding
R ¼ �=2k. At z ¼ 0, this sets kmax ¼ 0:1 h Mpc�1, which is
consistent with the numerical simulations of Meiksin et al.
(1999) and noticeably smaller than that used by most pub-
lished analyses of past redshift surveys. The kmax values used
for different redshift bins are listed in Table 1. The maxi-
mum scale of the survey kmin has almost no effect on the
results; we adopt kmin ¼ 0.

In principle, the mapping from the observed galaxy sepa-
rations to the physical separations and wavevectors depends
on the cosmological functions DA(z) and H(z), which are

varying continuously across the redshift range of the survey.
When doing an analysis of real data, one would of course
include this variation. For our forecasts, however, we opt to
break the survey into a series of slabs in redshift, inside of
which we treat the survey region as a fixed Euclidean geome-
try, with a constant DA and H and a rectilinear division
between the transverse and radial directions. This approxi-
mation is harmless as regards the statistical power of the
survey or the parameter degeneracies involved. We use red-
shift bins that are narrow enough to finely sample the dark
energy behavior.

3.3. Parameters

AFisher matrix formalism relies on a detailed parameter-
ization of its space of models. The performance forecasts
are only as realistic as the generality of the permitted mod-
els. For our forecasts, we proceed in two stages. First,
we define a very general parameterization based on CDM
cosmologies and assigning independent parameters to each
redshift bin. This permits us to forecast cosmographical
constraints independent of any dark energy model. Second,
we introduce a smaller set of parameters to describe dark
energy by relating the distances in different redshift bins.
This will allow us to combine many distance measurements
into constraints on a low-dimensional dark energy model.

3.3.1. Cold DarkMatter Cosmography

We use a very general space of CDMmodels. Our param-
eters include the matter density (�mh

2), baryon density
(�bh

2), matter fraction (�m), the optical depth to reioniza-
tion (�), the spectral tilt (ns), the tensor-to-scalar ratio
(T/S), and the normalization (lnA2

S). Our fiducial model is
�m ¼ 0:35, h ¼ 0:65, �� ¼ 0:65, �K ¼ 0, �bh2 ¼ 0:021,
� ¼ 0:05, ns ¼ 1, and T=S ¼ 0.

We supplement this model with many additional parame-
ters to describe the behavior at each redshift. For the CMB,
we include an unknown angular distance DA;CMB to the last
scattering surface at z ¼ 1000. For each redshift survey bin,
we add a parameter for the angular diameter distance
(lnDA), the Hubble parameter (lnH), the linear growth
function (lnG), the linear redshift distortion (ln �), and an
unknown shot noise Pshot. With five additional parameters
in each of six redshift bins, the total number of parameters
for the CMB and galaxy surveys is 38. The fiducial values of
these parameters are evaluated at the central redshift of each
slice, and the fiducial values of � are computed from the

TABLE 1

Baseline Survey Parameters

Survey z

kmax

(hMpc�1)

Vsurvey
a

(h�3 Gpc3)

Ngal
b

(105) Biasc
P(0.2 hMpc�1)

(h�3Mpc3)

P(kmax)

(h�3Mpc3)

nP

(0.2 hMpc�1)

nP

(kmax)

SDSS ............... 0.3 0.11 1.0 1.0 2.13 . . . 22900 . . . 2.29

z � 1 ................ 0.6 0.15 0.29 1.44 1.25 . . . 4660 . . . 2.33

0.8 0.17 0.40 2.00 1.40 . . . 3590 . . . 1.80

1.0 0.19 0.49 2.46 1.55 . . . 3090 . . . 1.55

1.2 0.21 0.56 2.82 1.70 2860 2620 1.43 1.31

z ¼ 3 ................ 3.0 0.53 0.50 5.0 3.30 2950 430 2.95 0.43

a 1000 deg2 for z � 1; 140 deg2 for z ¼ 3.
b The number density n: 10�4 h3Mpc�3 for SDSS, 5� 10�4 h3Mpc�3 for z � 1, and 10�3 h3Mpc�3 for z ¼ 3.
c Calculated using eq. (17) assuming �8;mass ¼ 0:9 at z ¼ 0, �8;g ¼ 1:8 for SDSS, �8;g ¼ 1 for z � 1 and z ¼ 3.
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values of the bias as found from the fiducial values of the
observed galaxy clustering.

By keeping DA(z), H(z), and G(z) as separate parameters
at each redshift, we have avoided any assumption thus far
of a specific dark energy model. The only cross talk between
the various distances and amplitudes occurs through the
parameters of �mh

2, �bh
2, and ns that set the shape of the

galaxy power spectrum. In other words, a good constraint
at one redshift implies nothing for another redshift because
we have specified nothing about the behavior of the
distances as a function of redshift.

The unknown white shot noise Pshot is a shot noise in the
observed power spectrum at each redshift bin that remains
even after the conventional shot noise of inverse number
density is subtracted from the observed power spectrum.
These terms can arise from galaxy clustering bias (Seljak
2000) even on large scales because of the zero-lag terms in
the correlation function, which are permitted in the theories
of local bias (Coles 1993).

The partial degeneracy between redshift distortions and
cosmological distortions requires care because the broad-
band aspects of the observed power spectra are extremely
well constrained in these surveys. If one knew the precise
amplitude of the matter power spectrum at a given redshift,
then one would know the bias to high precision. This would
yield the value of �, and knowing this, we could extract the
cosmological distortions from the quadrupole distortions of
the observed power. Unfortunately, we do not regard this
as a robust cosmological test. Nonlinear redshift distor-
tions are not well understood, particularly in the context
of poorly constrained bias models. We seek to isolate our
measurement of the cosmological distortions from overly
optimistic assumptions about redshift distortions. The un-
known growth functions and shot noises aid in this separa-
tion; the latter contributes because a white noise limits the
localization of a power-law break in a smooth power spec-
trum. We do not use the recovered growth functions in our
dark energy fits. We return to this topic in x 4.4.

3.3.2. FromCosmography to Dark Energy

We next wish to define a more restricted parameterization
for the study of dark energy. We do this through a simple
parameterization for the equation of state w(z). The equa-
tion of state of a cosmological constant has w ¼ �1 at all
times, whereas quintessence models have w > �1, generi-
cally with time dependence. While the most important dis-
tinction of dark energy models would be to decide whether
w ¼ �1 or not, we also want to develop methods for track-
ing the time dependence. As a simplest approach, we
assumed a linear equation of state in redshift (eq. [11]):

wðzÞ ¼ w0 þ w1z : ð11Þ

Our choice of parameters for a dark energy is �X (eq. [3]),
w0, and w1. Other choices for parameterizing the free func-
tion w(z) have been explored in Tegmark (2001), Linder
(2003b), and Huterer & Starkman (2003).

We used a variety of dark energy fiducial models in this
paper. The parameters of these models are listed in Table 2.
We will focus most of our attention on a�CDMmodel with
�X ¼ 0:65, w0 ¼ �1, and w1 ¼ 0 and on a comparison
model (model 2) with w0 ¼ �2

3. The primary difference
between these is that dark energy remains more important
at higher redshift in the w ¼ �2

3 model. We consider four

models with redshift-dependent equations of state. All have
w1 > 0, so that dark energy emerges at higher redshift than
we would infer from w today. In detail, we truncate the
increase in w at early times by setting dw=dz ¼ 0 at z > 2 so
that the value of w at z > 2 is simply w(2). This is of minor
importance because the dark energy is subdominant at these
high redshifts, but it is necessary to avoid dark energy domi-
nation at early times. Models 5 and 6 have w < �1 today,
which is a challenge to theory (but see Caldwell et al. 1998);
we include these simply to study the phenomenological
differences.

Equation (11) defines the equation of state today as the
parameter w0. Since the observations are all at higher red-
shift, the errors on w0 are misleadingly poor because uncer-
tainties in w1 allow the value today to vary around a well-
measured value at higher redshift. Errors on w at higher
redshifts decrease to a minimum at a redshift zpivot, similar
to the central redshift of the observations, and then increase
again. For any choice of zpivot, we can recast the parameter-
ization in equation (11) as

wðzÞ ¼ w0 þ w1z ¼ w zpivot
� �

þ w1 z� zpivot
� �

: ð12Þ

At this redshift of minimum error, the covariance between
w(zpivot) and w1 vanishes, so that the two parameters are
statistically independent. The value of zpivot can be com-
puted from the covariance matrix of w0 and w1 via the
method in Appendix A of Eisenstein et al. (1999).

3.4. Completion and Transformation of FisherMatrices

We must complete our formula (eq. [9]) for the Fisher
information matrix for galaxy surveys by identifying the
power spectrum for the corresponding redshift bin. PðkÞ in
equation (9) is a three-dimensional galaxy redshift power
spectrum, to be reduced to two dimensions by symmetry.
When we reconstruct our measurements of galaxy redshifts
and positions using a particular reference cosmology, which
differs from the true cosmology, the observed power
spectrum is

Pobs kref?;krefk
� �

¼ DAðzÞ2refHðzÞ
DAðzÞ2HðzÞref

Ptrue k?;kk
� �

þPshot : ð13Þ

Here values ofDA andH in the reference cosmology are dis-
tinguished by the subscript ‘‘ ref,’’ while those in the true
cosmology have no subscript. The vector components k?

TABLE 2

Dark Energy Models

Model w0 w1

1 (�CDM)...................... �1 0a

2..................................... �2/3 0a

3..................................... �2/3 1/6b

4..................................... �1 1/3b

5..................................... �4/3 1/3b

6..................................... �1.15 1/3b

a The w1 perturbations in these models were
considered to extend to z ¼ 1; however, the
derivatives were computed with infinitesimal
step sizes, so the w > 0 region at high redshift
was not an issue.

b The equation of state is wðzÞ ¼ w0 þ w1z
for z < zt andw0 þ w1zt beyond.We use zt ¼ 2.
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and kk are, respectively, the wavenumbers across and along
the line of sight in the true cosmology. These are related to
the wavenumbers calculated assuming the reference
cosmology, by kref?¼k?DAðzÞ=DAðzÞref and krefk ¼
kkHðzÞref=HðzÞ. The prefactor of distance ratios accounts
for the difference in volume between the two cosmologies.
We adopt the reference cosmology to be equal to our
fiducial cosmology for simplicity.

Next, the true cosmology must be constructed, including
the redshift distortions. We do this by scaling to z ¼ 0:

Pobs kref?;krefk
� �

¼ DAðzÞ2refHðzÞ
DAðzÞ2HðzÞref

b2 1þ�
k2k

k2?þk2k

 !2

� GðzÞ
Gðz¼0Þ

� �2
Pmatter;z¼0ðkÞþPshot ; ð14Þ

where the bias b is �m(z)
0.6/�(z). The normalization used to

derive the power spectrum at z is

Pðknorm;z¼1000Þ¼A2
S

knorm
kfid

c

Hð1000Þ

� �4
; ð15Þ

where kfid¼0:025 Mpc�1 and k�1
norm¼3000 Mpc. The actual

power spectrum and derivatives with respect to various
parameters are reconstructed from equation (14), using the
numerical methods and results at z¼0 from Eisenstein et al.
(1999).

For the Fisher matrix of CMB, we assume errors for the
Planck satellite including polarization from Eisenstein et al.
(1999). With Planck, the fractional errors on �mh

2 and �bh
2

are 0.9% and 0.6%, respectively. Together, these more than
suffice to calibrate the sound horizon to 1%. The recovered
error on the angular diameter distance to z ¼ 1000 is 0.2%.

For the Fisher matrix of SNe, we introduce 16 redshift
bins, at 0.05 and at 0.3–1.7 by steps of 0.1, to represent the
SN distance information. We assign 1% independent errors
to each redshift point (i.e., 0.022 mag error in distance mod-
ulus), with an overall 5% uncertainty in the distance scale
(since the SN method by itself gives only a relative distance
measurement). The appropriate covariance matrix is con-
structed and then inverted to give the Fisher matrix. In prac-
tice, the uncertainty in the distance scale is substantially
reduced from the 5% starting value by combination with the
CMB because the CMB’s measurement of�mh

2 is combined
with the SN measurement of �m to yield the Hubble
constant itself.

Our SN model was chosen to give similar performance to
that of the proposed SNAP mission (Aldering et al. 2002)
but differs in fine detail from that of the SNAP team. One
should note that our 16 redshift points are statistically inde-
pendent, so that with modest rebinning we are asserting
better than 0.01 mag calibration between low- and high-
redshift SNe. This is well beyond the current state of the art
and is essentially the design goal of the SNAPmission.

Once the Fisher matrices for all the constituent data sets
are set, we must derive marginalized errors on DA(z) and
H(z) and eventually on the dark energy parameters. Figure
2 shows the steps of the procedure graphically. To begin, the
Fisher matrices are summed up and inverted. The square
roots of the diagonal terms of this inverse Fisher matrix are
the marginalized errors on parameters. We marginalize over

Fig. 2.—Flowchart of transformations of the Fisher matrices necessary to produce forecasts for the distance and dark energy parameters
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and remove all the parameters that are not concerned with
cosmography by taking a submatrix of the inverse Fisher
matrix that includes only the rows and columns for �mh

2,
DA;CMB, and the values ofH(z) andDA(z) at all redshift bins.
This yields the covariance matrix for the cosmographical
parameters. Although this is an intermediate result, it is very
useful because it is independent of any dark matter model.

Next we project these errors through to the dark energy
parameter space. Because the dark energy model makes
explicit predictions for the various distances, we are not
marginalizing over parameters. Rather, we are contracting
the inverse of the covariance matrix, as one would do in a
multidimensional �2 analysis. Hence, we invert the cosmo-
graphic covariance matrix to get a Fisher matrix �FF and con-
tract this with the set of derivatives between the distances
and the dark energy parameters (�mh

2,�X, w0, andw1):

�FFDE;ij ¼
X
m;n

@pn
@qi

�FFnm
@pm
@qj

; ð16Þ

where pm are the distance parameters and qi are the dark
energy parameters. By inverting this Fisher matrix, we
attain marginalized errors of dark energy parameters.

Equation (16) implies that the constraints on dark energy
will be a combination of how well DA(z) and H(z) are esti-
mated within a given set of surveys and how effectively
measurements ofDA(z) andH(z) can constrain dark energy.
Figure 3 shows the derivatives of DA(z) and H(z) with
respect to the dark energy parameters. The left-hand panel
is for �CDM; the right-hand panel is for model 2 (w ¼ �2

3).
One should remember that these are partial derivatives, so
that three of the parameters �mh

2, �X, w0, and w1 are being
held fixed. The derivatives with respect to w0 at fixed �mh

2,
�X, and w1 have larger amplitude than those to w1, meaning
that DA and H place better constraints on w0 than on w1.
Based on the positions of maximum amplitudes, we expect

that the information on w1 comes from higher redshift than
w0. It is interesting to note that while an advantage of this
acoustic oscillation method is to measureH(z), the peaks of
derivatives of H(z) are at lower redshift where, as we will
find, this method has poorer error bars. This tends to favor
lower redshift probes such as SNe. It also implies that
improving error bars on w1 could be done by changing the
redshift survey conditions at higher redshifts; that is, we
may want to decrease error bars on H(z) over the range
z ¼ 1 3 or onDA(z) at ze2. Comparing w ¼ �2

3 to �CDM,
one finds that the derivatives of bothDA(z) andH(z) peak at
higher redshift when w is more positive. This will favor the
galaxy surveys at higher redshift. Models 3–6 share this
trend.

3.5. Survey Design

We want to design redshift surveys that are optimized to
derive DA(z) and H(z) within accessible resources. Our
requirement is that we should be able to measure multiple
acoustic peaks at various redshifts with high precision. In
this section we define two sets of baseline surveys, with
parameters in Table 1; we also consider variations on these
in x 4.

To constrain the scale of the acoustic peaks, we clearly
need superb precision in the power spectrum measure-
ments. Equation (8) shows that the errors �P depend on
the survey volume Vsurvey and on the number density n of
objects in the survey. Of course, Vsurvey and n are limited
by the available observational resources. If we assume that
the observational resources scale with the total number of
objects N, then at fixed N, �P/P has a minimum at n ¼ 1=P
(Kaiser 1986) at each wavenumber k. However, near this
minimum, the performance �P/P varies slowly, and a small
deviation from the minimum incurs little penalty. For
example, using nP ¼ 3 or nP ¼ 1

3 increases the error by

Fig. 3.—Derivatives of angular diameter distance (DA) and Hubble parameter (H ) with respect to �X, w0, and w1 with �mh
2 being held fixed. As these are

partial derivatives, one should remember that two of the three parameters are held fixed as well in each case. Notably, these are not the basis that leaves the
CMB anisotropies unchanged. The�X parameter is equivalent to�m.Left:w ¼ �1:0 (�CDM).Right:w ¼ �0:667 (model 2).
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only about 15%. With the relatively small dependence of
error on nP near the minimum, we suggest that nP slightly
larger than 1 is preferable for several reasons. First, larger
nP increases the signal-to-noise ratio per pixel in the map.
This enables computations beyond the power spectrum,
e.g., for higher order correlations and non-Gaussianity.
Second, it avoids some complication from the non-
Gaussianity of the shot noise itself. Finally, it permits us to
divide the survey into a few subsamples based on galaxy
properties or other criteria with less loss in signal-to-noise
ratio. This allows certain kinds of tests for systematic
errors in the survey and for additional science return from
the study of type-dependent galaxy bias.

On the other hand, it is possible that observation resour-
ces do not simply scale with the number of objects. For
example, the field of view, i.e., Vsurvey, may be more expen-
sive than the number of spectroscopic targets. For a fixed
survey volume, the error bars improve monotonically as tar-
gets are added, but the benefit saturates at nP41. For exam-
ple, the error �P/P with nP ¼ 5 is 1.7 times better than that
of nP ¼ 1 (at fixed volume), but only 20% worse than that
of nP ¼ 1. In reality, increased target density is not free;
higher number densities of objects require fainter objects
(i.e., a deeper survey) and hence longer exposure times. For-
tunately, the range of the number density we want is near
the luminous tale of the luminosity functions, where the
source counts are quite steep, and so it is rather easy to
increase nmoderately above 1/P.

We conclude that nP � 3 is a good choice based on these
considerations.

An additional question is which wavenumber k to use in
calculating the value of nP. We are primarily interested in
higher acoustic peaks, which occur around k ¼ 0:2 h
Mpc�1. The power at this wavenumber is �2500�2

8;g h�3

Mpc3, where �2
8;g is the rms overdensity of the galaxies in

spheres of 8 h�1 Mpc comoving radius. This gives n ¼
4� 10�4��2

8;g h
3 Mpc�3 for nP ¼ 1. This is considerably less

than the density of L* galaxies. Power is higher at smaller k,
so smaller densities would be optimal when measuring
larger scales.

At z � 3, the obvious choice of galaxy targets are the
Lyman break galaxies (Steidel et al. 1996). The value of �8;g

for these galaxies is measured to be about 1 (Steidel et al.
1998; Adelberger et al. 1998). The corresponding bias is
calculated using

�8;g ¼ b�8;mass

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

3
þ �2

5

r
; ð17Þ

assuming �8;mass of 0.9 for the matter distribution today and
a linear redshift distortion effect (Kaiser 1987). For the
number density, 10�3 h3 Mpc�3 is used so that nP � 3
at k ¼ 0:2 h Mpc�1. As an aside, a density nPð0:2 h
Mpc�1Þ > 1 is particularly valuable at z ¼ 3 because the
nonlinear scale has receded to much smaller scales
(kmax � 0:5 h Mpc�1!). To make full use of the survey at all
linear scales, we need a larger n. For our baseline survey, we
adopt a total comoving volume of 0.5 h�3 Gpc3, which gives
enough resolution and the precision to recover the first four
acoustic peaks (Fig. 1). At this redshift, the comoving vol-
ume between z ¼ 2:5 and 3.5 is 960 h�3 Mpc3 arcmin�2,
yielding a total survey field of 140 deg2. The areal number
density is 1 galaxy arcmin�2, similar to the depth of Steidel
et al. (1998).

At z � 1, the choice of galaxy target is less obvious. One
could reasonably use either giant elliptical galaxies or lumi-
nous star-forming galaxies. Luminous early-type galaxies
have the advantage of high bias, probably �8;g > 1, and
strong 4000 Å breaks, but getting the redshift does require
detecting this continuum break, which requires longer inte-
gration times. Later type galaxies may be less biased, mean-
ing that we need a larger number density, but they have
strong 3727 Å emission lines, which can often be identified
because the line is a doublet. For either case, we assume
�8;g ¼ 1 and n ¼ 5� 10�4 h3 Mpc�3. This makes nP at
k � 0:2 hMpc�1 slightly bigger than 1, which means that nP
will be at our desired value for the meaty part of the linear
regime. From z ¼ 0:5 to 1.3, there is a comoving volume of
480 h�3 Mpc3 arcmin�2, leading to a surface density of 0.24
galaxies arcmin�2. We assumed a total survey field of 1000
deg2, chosen to sample a similar volume to the SDSS lumi-
nous red galaxy sample. The total number of galaxies is
8:7� 105. To ensure sufficient resolution on the variations
of DA(z) and H(z), we subdivide the z � 1 survey into four
redshift bins centering at z ¼ 0:6, 0.8, 1.0, and 1.2 with
widths Dz ¼ 0:2. Hereafter, unless noted, the term ‘‘ z � 1
survey ’’ designates the sum of these four redshift bins.

For the nearby universe, we adopt the parameters of the
ongoing SDSS luminous red galaxy survey (Eisenstein et al.
2001). The survey volume for this sample is 1 h�3 Gpc3, and
the comoving number density is 10�4 h3 Mpc�3 at z � 0:3.
This survey is included in all analyses in this paper because
it is well underway.We use �8;g ¼ 1:8 for these galaxies.

To resolve the oscillations along the line of sight at
k � 0:2 h Mpc�1, and thereby measure H(z), requires that
the position of the galaxy along the line of sight be well esti-
mated. As the crest-to-trough distance for this wavelength is
only 15 h�1 Mpc, we need redshifts with accuracy of about
10�3 in 1þ z. We return to this computation in x 4.5, but for
nowwe note that this accuracy requires low-resolution spec-
troscopy. Photometric redshifts cannot recover H(z) from
the acoustic oscillations.

4. RESULTS AND DISCUSSION

4.1. Redshift Surveys with SDSS and CMB

We begin by presenting the results for cosmography from
our baseline surveys. Table 3 lists the errors on DA(z) and
H(z) for a combination of all the baseline redshift surveys

TABLE 3

Marginalized Errors onDA(z) and
H(z) for �CDM

Redshift

DA(z)

(%)

H(z)

(%)

0.3.............................. 5.19 5.80

0.6.............................. 4.30 5.19

0.8.............................. 3.22 3.59

1.0.............................. 2.30 2.84

1.2.............................. 2.03 2.53

3................................. 1.19 1.48

1000 ........................... 0.219 . . .

Note.—The fractional percentage
errors (1 �) on cosmological distances
from the combination of CMB, SDSS, and
our standard surveys at z � 1 and z ¼ 3.
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and the CMB data. The errors improve at higher redshift
because of the smaller scale of the nonlinear contamination.
At z ¼ 3, the constraints are particularly good, better than
2% on both quantities. The errors on DA(z) are generally
smaller than those onH(z). This is simply because the num-
ber of modes available in the two transverse directions is
bigger than the number of modes in the one line-of-sight
direction.

The reduced covariance matrix of theDA(z) andH(z) val-
ues is shown in Table 4.DA(z) andH(z) at different redshifts
are covariant only through the uncertainty in the physical
scale of the acoustic oscillations. From the tiny nondiagonal
terms between different redshift bins in Table 4, we can see
that the sound horizon scale is very well determined. The
nondiagonal elements ofDA(z) andH(z) in the same redshift
bin show that the degeneracy between the two is indeed
small as they are determined independently by the standard
ruler test.

Most of the behavior in the errors can be explained as var-
iations in the nonlinear cutoff scale kmax and in the survey
sizesVsurvey. We explore this in Figure 4 by showing how the
performance at z ¼ 1 depends on kmax. In the left-hand
panel of Figure 4 we plot the errors on DA and H as func-
tions of kmax for two values of the number density n. The
drop from kmax ¼ 0:1 to 0.2 hMpc�1 dominates the increase
in performance from z ¼ 0:3 to 1.2.

The errors on the distances flatten at around kmax � 0:25
hMpc� 1, implying a saturation of the information from the
locations of baryonic acoustic peaks. This is easily under-
stood as the drop in contrast of the higher harmonics
because of Silk damping. Beyond this wavenumber,
the errors slowly decrease with more efficiency for H(z).
This slight increase in information seems to be due to the
Alcock-Paczynski effect reappearing as the deviation of
the power spectrum from a pure power law is revealed by
the increasing range of wavenumbers in the survey.

The oscillatory behavior versus kmax shown in the left-
hand panel of Figure 4 is due to the oscillatory derivatives
of the power spectrum with respect to dilations in the dis-
tance scales. When kmax is close to the nodes of power spec-
trum, the derivative d lnP=d ln k has a local maximum and
the survey can better distinguish the differing cosmologies.
The right-hand panel of Figure 4 shows the covariance
between the uncertainties in DA(z) and H(z). These show a
similar dependence on d lnP=d ln k, but with a phase offset.
When the performance improves rapidly, the ability to
separate the two distances has a local maximum. Thus, the
decrease of the nondiagonal term at z ¼ 1 and 1.2 in Table 4
is simply because kmax has shifted to be near one of the
maxima of the plot in the right-hand panel of Figure 4. The
increasing covariance between DA(z) and H(z) at very large
kmax is another signature of the Alcock-Paczynski effect in
the broadband power that eventually intrudes.

Figure 4 also shows the degradation of performance
caused by shot noise. We generate results with essentially
zero shot noise by increasing the galaxy number density by
a factor of 100. This reveals the bare effect of kmax varia-
tions; with the baseline surveys, the power spectrum errors
at large k are somewhat degraded by increasing shot noise.
The left-hand panel of Figure 4 displays the ratio of per-
formance in the two cases. For k � 0:2 h Mpc�1, the degra-
dation due to shot noise is less than a factor of 1.5, as
expected. However, at large k, the effect is a full factor of 2.
Improved performance at large k increases the strength of
the Alcock-Paczynski effect, as shown by the even larger
covariance in the high density case in the right-hand panel.

We next project the errors from the baseline surveys
through to constraints on the dark energy parameters.
Table 5 shows the performance on dark energy parameters
using fiducial model 1 (�CDM). With all redshift surveys
combined with CMB and SDSS data, we can achieve a pre-
cision of 0.037 on �X, 0.25 on wðz ¼ 0Þ, 0.10 on wðz ¼ 0:8Þ,

Fig. 4.—Errors on DA(z) andH(z) as a function of kmax and n for the z ¼ 1 bin. Here n means the baseline number density in Table 1 (5� 10�4 h3 Mpc�3)
and n� 100means 100 times the baseline number density.
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and 0.28 on w1. For the �CDMmodel, as well as for model
2 in Table 2, we did not clip w1 for z > zt with zt ¼ 2. Clip-
ping w1 for z > zt in �CDM increases the errors by a factor
of 1.2.

In these calculations we assumed not only that the errors
on the distances were Gaussian but also that these generate
a Gaussian likelihood function for the dark energy parame-
ters. This is appropriate for well-constrained parameters
such as distances, �X, and �mh

2 but may be incorrect for w0

and w1. We repeated our analysis with a more complete like-
lihood calculation, in which the likelihood at each point in
w0-w1 space was computed assuming a (more appropriate)
Gaussian likelihood in the other parameters. The result is
the likelihood function in w0 and w1 with the other parame-
ters marginalized out. The resulting likelihood contours
were not ellipsoids, of course, and were slightly bent and off-
set. However, the extent and slope of the contours were
excellent matches to the Gaussian ellipsoids. We therefore
conclude that the Gaussian analysis gives a reasonable esti-
mate of the dark energy performance and is sufficient for
comparing different combinations of surveys.

Constraints on dark energy fiducial models 2–6 are pre-
sented in Table 6. Some of these non-�CDM models have
significantly improved performance on dark energy param-
eters. In particular, models 2 (w ¼ �2

3) and 3 (w0 ¼ �2
3,

w1 ¼ 1
6) have superb performance, with constraints on w1

reaching 9%. Models 4 and 6 are also better than �CDM.
Not surprisingly, these improvements correlate directly with
the value of w at intermediate redshifts and hence with the
amount of dark energy that remains at that time. Thus,
most improvements are keyed by the measurement of H(z)
andDA(z) at higher redshifts. This is reflected in the system-
atic increase of zpivot in the cases of improved performance.

4.2. Incorporation of Supernova Data

We next combine these redshift surveys with the SN data
set. The lower four rows of Table 5 show the error on dark
energy parameters with the SN survey. To begin, SN data
with only CMB and SDSS data yield impressive perform-
ance. �X and w0 are well constrained, and the error on w1 is
0.23, slightly better than what the redshift surveys produce.
When we combine the SN data with the galaxy redshift sur-
veys, the w1 error improves to 0.16. With the SN and CMB
data, the inclusion or exclusion of SDSS does not change
the result much because of the relatively large uncertainty in

both H(z) and DA(z) from SDSS as compared to the per-
formance of SNe; most of the information in the survey is
superseded by SN data.

Figure 5 shows the constraints in the w0-w1 plane as error
ellipses, marginalizing over all other parameters. The left-
hand panel shows the �CDM model, and the right-hand
panel shows model 2 (w ¼ �2

3) as a comparison to �CDM.
We see the difference in the directions of the two ellipses:
SNe with CMB and SDSS, and redshift surveys with CMB
and SDSS. The set with SNe shows a tight constraint espe-
cially in the w0 direction and the improvement of the con-
straint on w1 by redshift surveys. By comparing two models,
we can easily see that model 2 allows much better con-
straints on parameters than �CDM and favors redshift sur-
veys more. The redshift survey data are now comparable to
the capability of SNe: in w1, redshift survey data achieve
0.08, SN survey data produce 0.12, and together the data
sets produce 0.05 (Table 6).

The SN data have superb precision for z < 1:7 in DA(z)
and give excellent constraints on the shape of the distance-
redshift relation. Our baseline redshift surveys, on the other
hand, have larger error bars than SNe for z � 1:2, but they
have an advantage of having a distance-redshift data point
at very high redshift (z ¼ 3) and measuring H(z) in all red-
shift bins. In the �CDM fiducial model, the contributions
to w1 by H(z) measurements and DA(z) from the z ¼ 3 red-
shift survey are slightly less useful than the good precision
of DA(z) from SNe at lower redshifts (see Fig. 3). On the
other hand, dark energy models with more positive w have
larger signatures at higher redshift. This is good for both
data sets but helps the redshift surveys more.

4.3. Variation with Redshift Survey Parameters

We next show how performance varies with survey
parameters such as the total number of galaxies N and sur-
vey volume (Vsurvey). We present variations in Vsurvey and N
by factors of 5 in Table 7. Because the cosmographic per-
formance in each redshift survey is essentially independent,
one can interpret this table as varying each survey independ-
ently. The SDSS and CMB data are unchanged in all cases.
From Table 7, we can see that performance at z ¼ 3 is more
sensitive to the increase in N at fixed Vsurvey (i.e., higher tar-
get density) than for the reverse. For the z � 1 surveys, the
effect of increasing the number density is slightly larger for
z ¼ 1:0 and 1.2 bins and is more efficient for DA(z) than for

TABLE 5

Marginalized Errors on Dark Energy Parameters for �CDM

z � 1 z ¼ 3 SNe ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

0.0094 0.0926 0.882 1.172 0.729 0.218

Y 0.0090 0.0378 0.281 0.353 0.735 0.107

Y 0.0086 0.0758 0.466 0.446 0.959 0.184

Y Y 0.0083 0.0368 0.245 0.280 0.796 0.102

Y 0.0093 0.0088 0.116 0.231 0.478 0.035

Y Y 0.0088 0.0083 0.093 0.183 0.471 0.033

Y Y 0.0086 0.0085 0.096 0.189 0.479 0.034

Y Y Y 0.0082 0.0082 0.083 0.161 0.476 0.032

Notes.—‘‘Y ’’ indicates the data sets being used; CMB and SDSS data are included in all sets.
The baseline redshift survey parameters (V1N1) are used (Table 1). The value zpivot is the redshift
at which the errors on the value of w(z) are independent from the slope w1. The value �ðwz;pivotÞ is
the error on the value of w at that redshift; this is also the error on w that would be found if w1

were held fixed at the fiducial value. All errors are 1 �.
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Fig. 5.—Elliptical error regions on w0 and w1 for two different fiducial models. All other parameters have been marginalized over, and the contours are for
68% likelihood. CMB and SDSS are included in all cases.

TABLE 6

Cosmological Errors from Different Fiducial Dark Energy Models

Model z � 1 z ¼ 3 SNe ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

2....................... Y 0.0090 0.0259 0.129 0.092 1.249 0.057

Y 0.0088 0.0485 0.247 0.158 1.484 0.078

Y Y 0.0085 0.0245 0.119 0.081 1.333 0.050

Y 0.0094 0.0134 0.087 0.122 0.682 0.023

Y Y 0.0090 0.0088 0.049 0.062 0.714 0.022

Y Y 0.0087 0.0097 0.056 0.072 0.713 0.023

Y Y Y 0.0084 0.0083 0.045 0.052 0.744 0.022

3....................... Y 0.0090 0.0266 0.131 0.097 1.306 0.033

Y 0.0088 0.0530 0.268 0.190 1.389 0.043

Y Y 0.0085 0.0256 0.124 0.089 1.351 0.028

Y 0.0094 0.0158 0.081 0.107 0.741 0.019

Y Y 0.0090 0.0092 0.045 0.049 0.853 0.017

Y Y 0.0087 0.0103 0.051 0.058 0.821 0.018

Y Y Y 0.0085 0.0086 0.042 0.042 0.906 0.016

4....................... Y 0.0090 0.0320 0.180 0.144 1.203 0.049

Y 0.0088 0.0653 0.367 0.275 1.314 0.065

Y Y 0.0085 0.0313 0.171 0.132 1.259 0.043

Y 0.0094 0.0127 0.106 0.142 0.729 0.022

Y Y 0.0090 0.0090 0.062 0.075 0.774 0.021

Y Y 0.0087 0.0098 0.070 0.087 0.764 0.022

Y Y Y 0.0085 0.0086 0.056 0.064 0.803 0.021

5....................... Y 0.0090 0.0454 0.353 0.429 0.773 0.122

Y 0.0086 0.0844 0.560 0.547 0.968 0.183

Y Y 0.0083 0.0443 0.312 0.344 0.846 0.113

Y 0.0094 0.0089 0.132 0.258 0.488 0.040

Y Y 0.0089 0.0085 0.106 0.206 0.480 0.038

Y Y 0.0086 0.0087 0.109 0.208 0.491 0.038

Y Y Y 0.0083 0.0084 0.095 0.179 0.487 0.037

6....................... Y 0.0090 0.0368 0.240 0.232 0.975 0.078

Y 0.0087 0.0766 0.463 0.386 1.166 0.107

Y Y 0.0084 0.0365 0.224 0.201 1.057 0.070

Y 0.0094 0.0101 0.119 0.190 0.604 0.029

Y Y 0.0090 0.0086 0.081 0.125 0.609 0.029

Y Y 0.0087 0.0090 0.087 0.133 0.619 0.028

Y Y Y 0.0084 0.0084 0.071 0.105 0.626 0.028

Notes.—‘‘Y ’’ indicates the data sets being used; CMB and SDSS data are included in all sets. The baseline
redshift survey parameters (V1N1) are used.



H(z). Increasing Vsurvey was more effective for z ¼ 0:6 and
0.8 bins with a general trend of being more efficient forH(z)
than forDA(z). This agrees with the result from Table 1 that
the nP values of z ¼ 1:0 and 1.2 are somewhat less than
those of z ¼ 0:6 and 0.8. The preference to H(z) when
decreasing the number density is a result of an increased
contribution fromwavevectors along the line of sight, which
suffer less shot-noise degradation as a result of their
enhanced amplitude from redshift distortions.

The projected errors on the dark energy parameters under
these various survey parameters are presented in Table 8.
The results are consistent with the changes in the errors on
DA(z) and H(z). The graphical illustrations of these errors
are shown by error ellipses in Figure 6. For this figure, the
surveys at z � 1 (left-hand panel) and z ¼ 3 (right-hand
panel) are used separately so that one can see the individual
scalings. As one would expect, larger surveys provide better
constraints. The slopes of the major axes are an indicator of
the typical redshift zpivot of the data. The twisting of the
major-axis direction in the z ¼ 3 case is a visual sign that
larger z ¼ 3 surveys pull zpivot to be higher than the CMB
and SDSS data would yield by themselves.

As regards the survey size, increasingVsurvey at fixed num-
ber density causes the performance to scale nearly as the
square root of Vsurvey. In detail, the results fall slightly short
of this scaling because the SDSS and CMB data are not
similarly scaled. With a factor of 5 size increase in the z ¼ 3

survey, one begins to see the limitations of the CMB
calibration of the sound horizon.

When combined with the SN data, it is more valuable to
improve the z ¼ 3 survey than the z � 1 survey. Increasing
Vsurvey by a factor of 5 (V5N5) for both surveys improves
the errors on w1 by a factor of 1.6, increasing the z � 1 sur-
veys alone yields a 1.3 improvement, whereas increasing
z ¼ 3 alone improves by a factor of 1.4. Pictorially, this is
because the z ¼ 3 constraint ellipsoids for dark energy fall
at more of an angle as compared to the SN ellipsoids than
do the z � 1 ellipsoids. Physically, it is more advantageous
to widen the redshift range of the measurements, especially
because the SN data have somewhat higher precision than
the z � 1 redshift survey constraints onDA(z).

As mentioned in x 3.5, adjusting the survey volume
Vsurvey while holding the total number of targets fixed has
an optimum point for the measurement of the power spec-
trum at nP ¼ 1. We therefore expect that this trend would
extend to performance on dark energy parameters.
Indeed, we find that slightly larger surveys (e.g., a factor
of 2–3) do give small improvements and that much larger
surveys give steadily worse performance. Again, this is
exactly as we expected with our choice to aim for nP � 3.
True optimization of course requires detailed knowledge
of the survey instrument, the source population, the possi-
ble systematic errors, and the other science goals of the
survey.

TABLE 8

Marginalized Errors for �CDM for Various Survey Sizes

z � 1 z ¼ 3 ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

V1N1 0.0090 0.0378 0.281 0.353 0.735 0.107

V5N5 0.0079 0.0195 0.142 0.191 0.680 0.056

V1N1 0.0086 0.0758 0.466 0.446 0.959 0.184

V5N5 0.0070 0.0724 0.399 0.306 1.239 0.126

V1N1 V1N1 0.0083 0.0368 0.245 0.280 0.796 0.102

V1N1 V5N5 0.0069 0.0358 0.210 0.199 0.961 0.088

V5N5 V1N1 0.0074 0.0192 0.135 0.176 0.699 0.055

V5N5 V5N5 0.0064 0.0186 0.120 0.142 0.762 0.053

Notes.—Left two columns indicate how the sizes of the z � 1 and z ¼ 3 surveys are
being varied; blanks mean that the survey is excluded. CMB and SDSS are included in all
rows. For SDSS, the baseline survey parameters (V1N1) are always used.

TABLE 7

Marginalized Errors onDA(z) andH(z) as a Function of Survey Parameters

Surveys Redshift

z � 1 z ¼ 3 Parameter 0.3 0.6 0.8 1.0 1.2 3.0

V1N1 V1N1 DA(z) 5.19 4.30 3.22 2.30 2.03 1.19

H(z) 5.80 5.19 3.59 2.84 2.53 1.48

V1N5 V1N5 DA(z) 5.19 3.50 2.57 1.74 1.52 0.88

H(z) 5.80 4.44 3.00 2.30 2.01 1.08

V5N1 V5N1 DA(z) 5.19 3.52 2.75 2.12 1.91 1.10

H(z) 5.80 3.83 2.79 2.32 2.13 1.33

V5N5 V5N5 DA(z) 5.19 1.93 1.45 1.04 0.93 0.57

H(z) 5.80 2.33 1.62 1.28 1.15 0.69

Notes.—1 � fractional percentage errors on cosmological distances. CMB and SDSS
are included in all sets. For SDSS, the baseline survey parameters (V1N1) are always used.
V5N1: 5 times larger survey volume with 5 times smaller number density. V1N5: 5 times
higher number of objects with the baseline survey volume, i.e., 5 times higher number
density. V5N5: 5 times more survey volume with the baseline number density.
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4.4. Baryonic Oscillations versus Broadband Constraints

To this point, we have discussed the baryonic oscillations
as a distinct signature from which to infer cosmological dis-
tances. Although these features are essential, the Fisher
matrix we calculate includes additional contributions such
as the overall broadband shape of the power spectrum. In
this section we briefly assess the amount of information
on distances from baryonic oscillations apart from other
contributions.

To single out the nonbaryonic contribution, we repeat
our calculations with a fiducial model with 10 times lower
baryon fraction (�b ¼ 0:005), thereby removing the acous-
tic oscillations from the power spectrum. Overall, the errors
on DA(z) and H(z) increase by a factor of 2–3, with more
increase in the z � 1 set and more increase in DA(z) than
H(z), making the magnitudes of �DA

ðzÞ and �H(z) nearly
equal. The reduced correlation coefficient between DA(z)
and H(z) at the same redshift is about �0.8, indicating a
strong correlation. This covariance and the more equal pre-
cisions imply that the Alcock & Paczynski (1979) test (here-
after AP test) is playing a significant role in constraining
distances in the low-baryon case. The combination DAH is
well constrained, whereas the separate values of DA(z) and
H(z) are constrained only by the broadband shape of the
power spectrum.

The AP effect can isolate cosmological distortions in two
ways. First, when the power spectrum has a preferred scale
(and any deviation from a power law will suffice), we can
measure the cosmological distortion DAH by requiring that
scale to be isotropic. The values of DA(z) and H(z) can be
determined separately only if the preferred scale is known,
for example, from CMB data. Second, one can attempt to
separate the cosmological distortions from the redshift dis-
tortions by the angular dependence of the power spectrum
at a given k. When the redshift distortion is weak (� � 0),
the two distortions have identical angular signatures, both

quadratic in l, and hence are indistinguishable. However,
for larger �, both distortions take on more complicated
forms that lift the degeneracy in principle.

Because in our analysis the shape of the power spectrum
is known from the CMB data, the first mode of the AP effect
cannot produce the strong covariance between DA(z) and
H(z) that we find in the �b ¼ 0:005 case. Hence, the degen-
eracy between the redshift distortions and the cosmological
distortions must be angularly broken (i.e., the second mode
of the AP effect). To test this, we introduce a strong degener-
acy between DAH and � by using � � 0. For numerical rea-
sons, we decrease the fiducial �-values 30-fold. We apply
these lower �-values only to the computations of the deriva-
tives; the original �-values are retained in computing Veff so
that the weighting of the radial and tangential modes is
unchanged. The upper two rows in Table 9 show the results
with �b ¼ 0:005. With negligible �-values, the errors
increase by 15%–35% compared to the case with the normal
�-values, with more increase for DA(z) than H(z) and more
increase in the z � 1 set, which has larger � than the others.

Fig. 6.—Elliptical error regions on w0 and w1 as a function of survey parameters (�CDM). All other parameters have been marginalized over, and the
contours are for 68% likelihood. CMB and SDSS are included in all cases. V5N1 means 5 times the baseline survey volume with 5 times smaller number
density. V1N5 means 5 times the baseline number density. V5N5 means 5 times the baseline survey volume with the baseline number density. The ellipse with
no notation on survey parameters means the baseline survey parameters. For SDSS, the baseline survey parameters were used in all cases.

TABLE 9

Marginalized Errors onDA(z) andH(z) with Negligible � for

Different Baryon Fractions

Redshift

�b Parameter 0.3 0.6 0.8 1.0 1.2 3.0

0.005 ...... DA(z) 13.03 15.64 11.47 9.21 7.68 3.16

H(z) 12.71 14.05 10.50 8.49 7.27 3.56

0.05 ........ DA(z) 5.80 5.66 4.03 2.92 2.59 1.44

H(z) 6.68 7.83 4.75 4.04 3.64 2.03

Notes.—1 � fractional percentage errors on cosmological distances for
�CDM. CMB and SDSS are included in all sets. The derivatives are com-
puted with � � 0, thereby causing the redshift and cosmological distor-
tions to be more degenerate. The usual �-values are used to computeVeff.
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The reduced correlation coefficients decrease to roughly
�0.3, supporting the interpretation that the AP effect has
been removed and the remaining constraints are due to the
shape of the broadband power spectrum.

We next apply the same method for the �b ¼ 0:05 case so
as to enforce degeneracy between the cosmological and red-
shift distortions. The lower half of Table 9 shows the errors
on distances in this case. The comparison between the
�b ¼ 0:05 and �b ¼ 0:005 cases in Table 9 shows that the
broadband spectrum is a minor effect compared to the bar-
yonic oscillations. Comparing these results to the previous
results in Table 3 shows that the performance from the bar-
yonic oscillations will decrease by 10%–50% if we assume
that we do not know the behavior of the redshift distortions
very well.

To summarize, in the absence of baryonic oscillations,
the AP effect is capable of constraining the combined quan-
tity DAH very well provided that the shape of the redshift
distortions is relatively well known (Ballinger et al. 1996;
Heavens & Taylor 1997; Hatton & Cole 1999; Taylor &
Watts 2001; Matsubara & Szalay 2002, 2003). However, it is
the baryonic oscillations that separate DA(z) and H(z) most
effectively and provide precision constraints regardless of
the amount of information on the redshift distortions.

4.5. Photometric Redshift Surveys

With the advent of deep wide-field multicolor imaging
surveys, it is natural to ask whether photometric redshifts
can be used for studies of the acoustic oscillations. In this
section we study how uncertainties in the galaxy redshifts
affect our results. There are two basic lessons. First, recover-
ing the Hubble parameter H(z) requires measuring cluster-
ing on fairly small scales along the line of sight, so that
redshift precision substantially better than 1% is needed.
Second, redshift slices selected with photometric redshifts
can be sufficiently thin that the acoustic oscillations survive
in the angular power spectrum. This means that one can
measure DA(z) with these surveys, albeit with worse preci-
sion per unit survey sky coverage. Hence, photometric red-
shift surveys lose the advantage of the acoustic oscillations
to measureH(z) directly but could measure DA(z) if one has
a large enough survey. The idea of using transverse cluster-
ing to probe dark energy was analyzed in the weak-lensing
context by Cooray et al. (2001).

When redshifts are uncertain, one is smearing together
clustering at multiple distances along the line of sight. Our
first task is to consider whether the acoustic oscillations,
being narrow features in Fourier space, can survive this pro-
jection. The controlling effect is the variation in the comov-
ing angular diameter distance across the range of redshift
uncertainty. This can be addressed with Limber’s equation
(Limber 1953; Baugh & Efstathiou 1994). We model the
redshift distribution as a Gaussian of width �z and consider
the effects on the angular power spectrum. This is shown in
Figure 7, where we plot the derivative d lnP=d ln k that con-
trols the measurement of cosmological distortions for three
different values of �z. We adopt a z ¼ 1 slice and consider
0%, 4%, and 8% uncertainties (1 �) in 1þ z. One can see that
the oscillation pattern is essentially intact at 4% but substan-
tially degraded at 8%. In detail, we estimate that the errors
on DA(z) would be increased by 13% for the 4% case and
54% for the 8% case. The effects at z ¼ 3 are slightly more
forgiving, despite the higher kmax and hence narrower fea-

tures, because the derivative ofDA(z) versus z is slightly less.
We therefore conclude that photometric redshift errors
of 4% in 1þ z (1 �) are sufficient to preserve the acoustic
oscillations for the measurement ofDA(z) at ze0:5.

Having found that the transverse power spectrum is not
affected by reasonable projections, we next include the red-
shift uncertainty in our Fisher matrix formalism. We do this
by retaining the Euclidean approximation, i.e., treating the
survey as a box of fixed DA and H, but smearing the radial
position by a Gaussian uncertainty. If the line-of-sight
comoving position rz is convolved with an uncertainty of the
form exp½�ðDrzÞ2=2�2

r � with an uncertainty �r, then the
Fourier transform of the density field will simply be dimin-
ished by the transform of this kernel: �k / expð�k2k�

2
r=2Þ.

The observed power spectrum is then (L. Hui 2000, private
communication)

PðkÞ ¼ PobsðkÞe�k2k�
2
r ; ð18Þ

where Pobs was given in equation (14). In other words, the
power is strongly suppressed for large kk. The positional
uncertainty is related to the redshift uncertainty �z by �r ¼
c�z=HðzÞ.

The introduction of this suppression enters the Fisher
matrix calculation through its effect on the effective volume.
Modes with a relatively large kk will be swamped by shot
noise and therefore give no leverage on the power spectrum
measurements. Only modes with kk�rd1 are useful. Much
lower shot noise allows one to retain modes of larger kk, but
one is fighting a Gaussian suppression.

Because the measurement of H(z) depends on modes
aligned near the line of sight, the suppressed contribu-
tion from modes with large kk increases the error on H(z)

Fig. 7.—Derivative d lnP=d ln k as a function of wavenumber for three
different values of the redshift uncertainty. Larger uncertainties cause line-
of-sight projections that smear the narrow acoustic oscillations and impede
the detectability of cosmological distortions. Here �z ¼ 0:0 represents spec-
troscopic redshift error, whereas �z ¼ 0:08 and 0.16 correspond to 4% and
8%, respectively, of �z=ð1þ zÞ at z ¼ 1. [See the electronic edition of the
Journal for a color version of this figure.]
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significantly. The measurement of DA(z) arises from more
transverse modes, and modes with kk ¼ 0 always exist to
give some measurement ofDA(z). However, for large k, only
a thin slab of modes with kkd1=�r remains useful. As the
number of modes will scale as ��1

r , we expect that the errors
onDA(z) will scale as �

1=2
r for kmax�r41.

Figure 8 shows the fractional errors onH(z) and DA(z) as
a function of �r for redshift surveys at z ¼ 1:0 and 3. The
errors are constant for small �r and then increase rapidly
beyond a characteristic threshold. Performance at z ¼ 3
degrades at smaller �r than performance at z ¼ 1:0. This is
because of the larger value of kmax for z ¼ 3. An additional
small but nonzero effect is that the redshift distortions are
smaller at z ¼ 3 than at z ¼ 1. Larger distortions increase
the power in the radial direction and allow modes with
slightly larger kk to survive the shot noise. The errors on
H(z) degrade sharply for �re10 h�1 Mpc at z ¼ 1 and 5 h�1

Mpc at z ¼ 3. These correspond to redshift errors �z of
0.006 and 0.007, respectively. In terms of wavelength resolu-
tion �	/	, these are 0.003 and 0.002. Hence, our general
result is that fractional errors of 0.25% in 1þ z are required
to recoverH(z).

In Figure 8, the errors on DA(z) in both redshift bins
increase relatively slowly at �re10 h�1 Mpc and achieve the
predicted �

1=2
r dependence at large �r. Therefore, to calcu-

late �DA
with �r bigger than the values appearing in Figure

8, we can use �
1=2
r dependence to interpolate [up to the limit

of �z=ð1þ zÞ � 4%]. For numerical reasons, we assume a
redshift error of 1% in photometric redshift. This is too opti-
mistic for a normal photometric redshift, but one can scale
to larger uncertainties. For example, a 4% uncertainty
would have errors twice as large, which could be compen-
sated by making the survey area 4 times as large. The 1%
errors in ð1þ zÞ correspond to �r ¼ 34 h�1 Mpc at z ¼ 1
and �r ¼ 27 h�1Mpc at z ¼ 3.

Table 10 shows the errors on DA(z) andH(z) for different
survey conditions. Increasing the survey volume fivefold
while keeping the target density fixed (i.e., V5N5) decreases
the error by �

ffiffiffi
5

p
, as before. Further increases of the survey

volume, which are omitted in Table 10, continue to follow
the simple trend of V

1=2
survey. Increasing the number density

with fixed Vsurvey is slightly more efficient than the spectro-
scopic redshift case (�r ¼ 0) because the exponential sup-

pression of modes with nonzero kk means that there are
always modes that benefit from a larger n to achieve nP � 1.

Table 11 shows the propagated errors on dark energy
parameters for �CDM. The left-hand panel of Figure 9
shows the corresponding error ellipses. The errors on w0

and w1 using photometric redshifts increase by a factor of
�2.4 with the baseline survey parameters (V1N1) relative to
spectroscopic results, while w(zpivot) is less affected. As
shown in Figure 9, this is because the ellipse is more elon-
gated with relatively little increase in its minor axis com-
pared to the left-hand panel of Figure 5. This is due to the
increased dominance of the z � 1 survey over z ¼ 3. The
value of zpivot increases slightly with photometric redshift
data. As shown in Figure 3, DA(z) at higher z contributes
more to the information compared to H(z). Thus,

Fig. 8.—Error on DA(z) and H(z) as a function of the line-of-sight posi-
tional uncertainty �r for z ¼ 1 and 3 redshift bins. CMB and SDSS data are
included in each redshift bin. Here 1% of �z=ð1þ zÞ corresponds to 34 h�1

Mpc at z ¼ 1 and 27 h�1Mpc at z ¼ 3.

TABLE 10

Marginalized Errors onDA(z) andH(z) for Photometric Redshift Surveys

Surveys Redshift

z � 1 z ¼ 3 Parameter 0.3 0.6 0.8 1.0 1.2 3.0

V1N1 V1N1 DA(z) 5.19 6.98 4.84 4.25 3.90 2.26

H(z) 5.80 22.37 19.58 18.28 17.77 16.15

V1N5 V1N5 DA(z) 5.19 4.84 3.26 2.81 2.56 1.57

H(z) 5.80 16.33 14.29 13.27 12.88 10.11

V5N5 V5N5 DA(z) 5.19 3.14 2.19 1.93 1.77 1.06

H(z) 5.80 10.02 8.78 8.21 7.99 7.26

Notes.—The fractional percentage error on the cosmological distances under conditions
appropriate to photometric redshifts. The redshift accuracy has been degraded to 1% (1 �) on
�z=ð1þ zÞ ¼ D	=	, i.e., �z ¼ 2% at z ¼ 1 and 4% at z ¼ 3. The results will scale as �

1=2
z , and �z

would typically be larger for actual photometric redshifts. The left two columns show variations
in the survey parameters. V1N1 is the baseline survey volume and number density. V1N5 allows
for a fivefold increase in the number density. V5N5 is 5 times more volume at the baseline
number density. CMB and SDSS are included in all sets. For SDSS, the baseline survey
parameters (V1N1) are used and spectroscopic redshifts (�z ¼ 0) are adopted. The �CDM
fiducial model is used.
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eliminating H(z) by using photometric redshifts will weight
higher redshifts slightly more.

Table 11 also shows that increasing Vsurvey 20-fold
(V20N20) or 10-fold with a fivefold increase in target den-
sity n (V10N50) allows the results from photometric redshift
surveys to achieve the accuracy of the spectroscopic redshift
surveys. This corresponds to 10,000 or 20,000 deg2 of sky at
z ¼ 1 (with 1% errors in 1þ z). Observationally, increasing
the number density by 5 times (V10N50) will be more diffi-
cult than doubling the survey area because the galaxy lumi-
nosity function flattens out around this number density, so
that

ffiffiffi
2

p
in depth is far less than a factor of 5 in source

counts. The errors of w0 and w1 do not scale trivially with
V

1=2
survey because the SDSS and CMB survey parameters are

being held fixed.

Results including the SN survey data are shown in Table
12. With SNe, improving the redshift survey condition to
between V5N5 and V10N10 allows the photometric redshift
survey to recover the spectroscopic result in Table 5. This is
equivalent to an imaging survey of about 30,000 deg2 with
4% photometric redshift error at z � 1 and a depth to reach
1000 z � 1 galaxies per square degree. Surveys such as
Pan-STARRS1 or the Large Synoptic Survey Telescope2

could achieve this.
Tables 13 and 14 show the same analysis as Tables 11

and 12, but for model 2 (w ¼ �2
3) instead of �CDM. The

TABLE 11

Marginalized Errors for �CDM for Photometric Redshift Surveys

z � 1 z ¼ 3 ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

V1N1 0.0091 0.0799 0.613 0.704 0.834 0.175

V1N5 0.0089 0.0736 0.534 0.578 0.887 0.150

V1N1 0.0090 0.0859 0.752 0.979 0.735 0.218

V1N5 0.0089 0.0820 0.670 0.855 0.742 0.217

V1N1 V1N1 0.0088 0.0777 0.584 0.668 0.834 0.175

V1N5 V1N5 0.0085 0.0708 0.504 0.544 0.887 0.148

V5N5 V5N5 0.0077 0.0592 0.413 0.437 0.904 0.118

V10N10 V10N10 0.0069 0.0485 0.335 0.352 0.912 0.094

V10N50 V10N50 0.0062 0.0375 0.256 0.267 0.921 0.071

V20N20 V20N20 0.0060 0.0379 0.261 0.276 0.908 0.073

Notes.—Redshift uncertainties have been applied as in Table 10: 1% in �z=ð1þ zÞ. Various
survey sizes are investigated, as detailed in the left two columns. V numbers specify the change
in the survey volume, N the change in the number of galaxies. Note that V20 is 20,000 deg2 at
z � 1 and about 3000 deg2 at z � 3. Blanks indicate that a survey has been excluded. Larger
redshift uncertainties can be offset with more volume; for example, 4% errors in �z=ð1þ zÞ
would require 4 times more volume to produce the results in this table. CMB and SDSS are
included in all rows. For SDSS, the baseline survey parameters (V1N1) with spectroscopic
redshifts are used in all cases.

Fig. 9.—Elliptical error regions for w0 and w1 for photometric redshift surveys with 1% of �z=ð1þ zÞ (�z ¼ 0:02 for z � 1, �z ¼ 0:04 for z ¼ 3:0). Left:
�CDM. Right: Model 2 (w ¼ �2

3). CMB data and all redshift surveys are included in all cases. The survey parameters written inside the parentheses are for
both z � 1 and z ¼ 3 bins. V numbers specify the change in the survey volume relative to the baseline, N the change in the number of galaxies. For SDSS, the
baseline survey parameters (V1N1) with spectroscopic redshifts are used. In both figures, V10N50 is nearly the same as V20N20.

2 See http://www.lssto.org.

1 See http://pan-starrs.ifa.hawaii.edu.
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degradation of performance relative to the spectroscopic
case is similar. Like the �CDM case, V10N50 or V20N20
recovers the spectroscopic result without SNe, and V5N5 or
V10N10 does the job with SNe. The right-hand panel of
Figure 9 shows the corresponding error ellipses.

Therefore, after considering both the projection and
power suppression effects of redshift uncertainties, we
expect that, when combined with SN data, surveys with 4%
errors on 1þ z and roughly 30 times more volume than our

baseline surveys will be equivalent to the spectroscopic sur-
veys. As this is essentially the full sky at z � 1, improving
beyond these levels will require better redshift accuracy.

5. CONCLUSION

Understanding the acceleration of the universe is one of
the most important problems in both cosmology and funda-
mental particle physics. Identifying the physical cause,

TABLE 12

Marginalized Errors for �CDM for Photometric Redshift Survey with SNe

z � 1 z ¼ 3 ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

0.0093 0.0088 0.116 0.231 0.478 0.035

V1N1 0.0089 0.0085 0.106 0.212 0.473 0.034

V1N5 0.0087 0.0083 0.098 0.195 0.470 0.034

V1N1 0.0090 0.0087 0.114 0.229 0.477 0.034

V1N5 0.0087 0.0086 0.113 0.227 0.476 0.034

V1N1 V1N1 0.0086 0.0084 0.105 0.211 0.473 0.034

V1N5 V1N5 0.0083 0.0082 0.097 0.193 0.470 0.033

V5N5 V5N5 0.0073 0.0080 0.087 0.171 0.471 0.032

V10N10 V10N10 0.0065 0.0078 0.077 0.148 0.478 0.031

V10N50 V10N50 0.0060 0.0076 0.066 0.119 0.496 0.030

V20N20 V20N20 0.0058 0.0076 0.068 0.124 0.495 0.030

Note.—As Table 11, but the SN data have also been included.

TABLE 14

Marginalized Errors for Model 2 for Photometric Redshift Surveys with SNe

z � 1 z ¼ 3 ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

0.0094 0.0134 0.087 0.122 0.682 0.023

V1N1 0.0091 0.0104 0.066 0.089 0.695 0.023

V1N5 0.0089 0.0091 0.057 0.072 0.716 0.023

V1N1 0.0091 0.0120 0.076 0.107 0.678 0.023

V1N5 0.0089 0.0112 0.068 0.095 0.676 0.023

V1N1 V1N1 0.0088 0.0100 0.062 0.084 0.693 0.023

V1N5 V1N5 0.0086 0.0088 0.053 0.067 0.713 0.023

V5N5 V5N5 0.0077 0.0079 0.046 0.054 0.743 0.022

V10N10 V10N10 0.0070 0.0073 0.041 0.044 0.799 0.021

V10N50 V10N50 0.0063 0.0068 0.037 0.035 0.904 0.019

V20N20 V20N20 0.0062 0.0069 0.038 0.037 0.881 0.020

Note.—As Table 11, but fiducial model 2 (w ¼ �2=3) has been used and SN data are
included.

TABLE 13

Marginalized Errors for Model 2 for Photometric Redshift Surveys

z � 1 z ¼ 3 ��mh2 /�mh
2 ��x

�w0
�w1

zpivot �wz;pivot

V1N1 0.0091 0.0637 0.395 0.278 1.383 0.087

V1N5 0.0090 0.0563 0.332 0.224 1.452 0.069

V1N1 0.0092 0.0618 0.342 0.249 1.285 0.122

V1N5 0.0090 0.0590 0.284 0.187 1.376 0.119

V1N1 V1N1 0.0090 0.0545 0.305 0.207 1.412 0.086

V1N5 V1N5 0.0087 0.0457 0.245 0.160 1.476 0.068

V5N5 V5N5 0.0079 0.0346 0.182 0.118 1.476 0.053

V10N10 V10N10 0.0071 0.0264 0.138 0.090 1.463 0.041

V10N50 V10N50 0.0064 0.0191 0.099 0.065 1.453 0.030

V20N20 V20N20 0.0063 0.0195 0.102 0.067 1.436 0.032

Note.—As Table 11, but fiducial model 2 (w ¼ �2=3) has been used.
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whether dark energy or some alteration to the theory of
gravitation, is certain to be a major breakthrough. Precision
measurements of the expansion history of the universe
could be crucial in choosing between alternative theories. In
this paper we demonstrated that a standard ruler test using
baryonic acoustic oscillations imprinted in the large-scale
structure could be a superb probe of the acceleration his-
tory. The oscillations in the galaxy power spectrum are
expected to be robust against contamination from clustering
bias, redshift distortions, and other broadband systematic
errors.

We have studied the performance that could be achieved
on dark energy models from the measurement of the acous-
tic oscillations in large galaxy spectroscopic surveys at red-
shifts 0.3, 1, and 3. The z � 1 baseline survey uses 900,000
galaxies to probe 1.7 h�3 Gpc3; the z ¼ 3 survey uses a half-
million galaxies to cover 0.5 h�3 Gpc3. While these numbers
are large, the number densities are not, which means that
relatively bright galaxies could be used. Using a Fisher
matrix treatment of the statistical errors that result from the
three-dimensional power spectra, as well as CMB and SNe
data, we forecasted errors on the distances along and across
the line of sight and then projected these measurements of
H(z) andDA(z) onto dark energy parameters. Of course, the
cosmographical performances are independent of the details
of the dark energy model. We summarize our major results
below.

First, we have shown that (1 �) errors of 0.037 on �X,
0.10 on wðz ¼ 0:8Þ, and 0.28 on dw/dz are achievable for
�CDM when CMB provides the scale of the baryonic
oscillations. The constraints on dw/dz are comparable to
those from the luminosity distances of future SN data.
Most constraints were contributed by information in the
higher redshift surveys (ze0:6) because the baryonic oscil-
lations in the power spectrum are better preserved against
nonlinearity at higher redshift. When we combined the red-
shift survey data with the SN data, the constraints were
improved to 0.16 on dw/dz.

Second, we found that fiducial dark energy models with
less negative w than �CDM improve overall performance
and also favor the galaxy redshift surveys relative to the SN
data. Together, a 0.05 measurement of dw/dz is achieved!

Third, we discussed how the quality of constraints
depends on the survey volume and number density. Increas-
ing the survey volume with the number density fixed always
gives the better result by V

1=2
survey. Increasing the number den-

sity, that is, going deeper with the volume fixed, will also
improve the constraints but with asymptotic saturation.
Changing the survey volume with a fixed total number of
objects has a maximum in performance that is close to the
baseline values.

Fourth, we computed how well an imaging survey with
photometric redshifts could measure the acoustic oscilla-
tions. We find that errors of 0.25% in 1þ z are necessary to
retain information on the Hubble parameter H(z). How-
ever, redshift errors of 4% in 1þ z can be tolerated without
losing the oscillations to projection effects, and the angular
diameter distance could be measured as a function of red-
shift. We estimate that a survey 20 times larger than our
baseline but with 1% redshift error on 1þ z is needed to
replace the spectroscopy but that the requirement drops to
5–10 times larger when combined with the constraints from
SNe. The 4% redshift errors require 4 times more volume.

To date, much of the attention in cosmological probes of
acceleration has rightly been given to the studies of distant
SNe. The acoustic oscillations in the galaxy power spectrum
have not even been conclusively detected yet. Nevertheless,
we are encouraged by the result that the study of acoustic
oscillations in large galaxy surveys can achieve comparable
performance to upcoming SN data sets. Given the mystery
and importance of the acceleration of the universe, it is cru-
cial to have multiple experiments with independent system-
atic errors. Moreover, the ability to measure H(z) directly
and to probe the expansion at higher redshifts (z � 3) opens
the possibility of detecting new surprises. Although the cos-
mological constant model is most easily probed at lower
redshifts, given the woeful history of theoretical predictions
for dark energy, it seems to us unwise to design experiments
based too closely on the assumptions of�CDM.

While the required redshift surveys are large, they are fea-
sible within the current decade. Ground-based 8 m tele-
scopes are sufficiently sensitive but currently lack the
necessary highly multiplexed wide-field spectroscopic capa-
bility. Instruments such as the KAOS concept3 could per-
form these surveys in about a year of observing. The surveys
would of course have many other science applications, both
for the study of galaxy evolution and for the search for more
speculative features of the linear perturbations, e.g., primor-
dial non-Gaussianity or additional preferred scales. At
z ¼ 3, the reach into the linear regime on intermediate scales
exceeds even that of the CMB.Hence, we conclude that such
surveys are attractive options for the study of large-scale
structure over the next decade.
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Linder, and Saul Perlmutter for useful discussions. H.-J. S.
was supported by a University of Arizona College of
Science Graduate Fellowship. D. J. E. is supported by
National Science Foundation grant AST 00-98577 and by
an Alfred P. Sloan Research Fellowship.
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