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ABSTRACT
This study investigates the beam patterns for radiation originating in a hollow column on a slowly

rotating neutron star where the Schwarzschild metric is appropriate for calculating photon paths. The
beam pattern of a hollow column is the sum of contributions from the two emitting surfaces on the
inside and the outside of the column, which combine into a two-component beam pattern. The shapes of
the inside beam pattern, the outside beam pattern, and the combined beam pattern are studied for radial
cones of di†erent height and width, for isotropic and beamed emission, and for di†erent values of mass
and radius of the neutron star. It is argued that the hollow cone model provides an interpretation of the
pulse proÐles of the X-ray pulsar Centaurus X-3.
Subject headings : gravitational lensing È pulsars : general È pulsars : individual (Centaurus X-3) È

stars : neutron È X-rays : binaries

1. INTRODUCTION

The standard model of a binary X-ray pulsar is that of a
close binary system in which a strongly magnetized neutron
star accretes matter from its nondegenerate companion.
The X-radiation originates in a region close to or on the
stellar surface where the infalling matter decelerates.
Because of the strong magnetic Ðeld of the neutron star, the
accreted matter is funneled toward the magnetic poles, so
X-ray emission is conÐned to two small emission regions.
Therefore, when the neutron star rotates the X-ray Ñux
appears pulsed to a distant observer.

The pulse proÐles of accreting X-ray pulsars, their depen-
dence on photon energy, and their variation with X-ray
luminosity are characteristic for each source. Since the
details of the accretion Ñow and the radiation Ðeld in the
emission regions are still imperfectly understood, studies of
simpliÐed models may help to interpret qualitatively the
features observed in the pulse proÐles and to obtain a better
understanding of the properties of the emission regions.

One important aspect concerning the emission regions is
the accretion geometry. Together with relativistic light
deÑection near the neutron star, it has a major inÑuence on
the predicted pulse shapes. The accretion geometry is deter-
mined by the Ðlling factor of the accretion funnel and the
mode of deceleration. If the threading region of the accre-
tion disk where matter latches onto the magnetic Ðeld lines
has an extension that is small compared to the Alfve� n
radius, then the accretion funnel is expected to be a thin-
walled hollow column. A large threading region should
result in a Ðlled funnel. If the deceleration of the infalling
matter occurs in the neutron star atmosphere, then the
emission region is essentially a part of the stellar surface.
This emitting slab is in the shape of a polar cap if the funnel
is Ðlled and in the shape of a ring for a hollow funnel. If, on
the other hand, the matter decelerates at some distance
above the surface because of a shock or radiation pressure,
the emission region is an accretion column, either Ðlled or
hollow.

The beam patterns arising from radiating hot spots on
the surface of the neutron star have been investigated by

Pechenick, Ftaclas, & Cohen (1983). They considered iso-
tropic and beamed emission, di†erent cap sizes, and di†er-
ent values for the mass and radius of the neutron star.
Ri†ert et al. (1993) and Leahy & Li (1995) considered polar
caps and rings and performed Ðts to observed pulse proÐles
in order to determine the locations of the caps or rings on
the neutron star surface as well as the viewing direction.
Ri†ert & (1988) studied the beam patterns ofMe� sza� ros
radial cones radiating from the sides and the dependence on
the height of the cone and on mass and radius of the
neutron star.

This study complements the ones by Pechenick, Ftaclas,
& Cohen (1983) and by Ri†ert & (1988) with anMe� sza� ros
investigation of the beam patterns of hollow cones. The new
feature of a hollow cone model that is not present in the
polar cap, polar ring, and column models is the fact that
there are contributions from two emitting surfaces with
di†erent physical conditions in general that combine to a
two-component beam pattern. Section 2 contains the
description of the simple geometrical model on which this
study is based and of the method used for the computation
of the beam patterns. The shapes of the inner, the outer, and
the combined beam patterns are studied in ° 3 for cones of
di†erent height and width, for isotropic and beamed emis-
sion, and for di†erent values of mass and radius of the
neutron star. It is argued in ° 4 that the pulse proÐle of the
X-ray pulsar Cen X-3 lends itself to an interpretation in
terms of a hollow accretion column.

2. ACCRETION COLUMN MODEL AND COMPUTATION OF

THE BEAM PATTERNS

Studies of the dynamic infall problem of matter accreting
onto a neutron star in a narrow funnel have shown that in
high-luminosity sources, the matter is decelerated above the
stellar surface in a radiative shock that separates a region of
freely falling plasma above from a settling region of nearly
stagnant plasma below, with radiation mainly originating
in the deceleration and settling regions and escaping from
the sides of the column (Basko & Sunyaev 1976 ; Wang &
Frank 1981 ; Kirk 1985 ; Arons 1992 ; Becker 1998). The
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radiative shock in a thin-walled hollow funnel is expected to
rise above the stellar surface if the luminosity L exceeds L

*
:

L [ L
*

\ a
4

L Edd
pT
p
s

, (1)

where a is the half-opening angle of the base of the funnel,
the Eddington luminosity, M theL Edd\ 4ncm

p
GM/pTmass of the neutron star, the Thomson scattering crosspTsection, and the magnetic scattering cross section aver-p
saged over direction and frequency (Basko & Sunyaev 1976).

The radiation observed from a hollow column originates
from the inner and outer walls of the optically thick settling
mound below the shock. These two emission regions di†er
in their visibility for a distant observer. While the outer wall
is either directly visible or hidden behind the neutron star,
the inner wall may be directly visible (if the line of sight is
close to the magnetic axis), visible across the free-fall region,
or hidden by the optically thick settling region. The optical
depth across the base of the free-fall region at radial coordi-
nate r is
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where o is the average density, d the thickness of the column
wall, p the magnetic scattering cross section, and ther

nradius of the neutron star. For and ThomsonL Z L
*(nonmagnetic) scattering the free-fall region(p \ p

T
\p

s
),

is marginally optically thick ; for higher luminosities
increasingly so. For magnetic scattering in the strong mag-
netic Ðeld B of an X-ray pulsar, p greatly exceeds nearpTthe cyclotron resonance and may be reduced far below pTfor low frequencies The low-frequencyu>u
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scattering cross section is to a good approximation given by
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for the ordinary and extraordinary modes of polarization,
respectively, where Ë is the angle between the direction of
propagation of the radiation and the magnetic Ðeld (Arons
& Klein 1987), so the free-fall region is optically thin to
low-frequency radiation in the extraordinary mode. At
higher frequencies the free-fall region will increasingly be
optically thick for both polarization modes. Therefore, one
must expect that radiation from the inner column wall
makes an important contribution to the beam pattern at
low frequencies and that scattering of inner wall radiation
in the free-fall zone makes an impact on the energy and
luminosity dependence of the beam pattern.

In the following, a simple geometrical model will be used
in order to point out the main characteristics of the two-
component beam pattern arising from a hollow column.
Emphasis will be on the impact of relativistic light deÑec-
tion near the neutron star on the visibility of the emitting
column walls and thereby on the beam pattern. In this
model (sketched in Fig. 1) the neutron star with Schwarz-
schild radius and radius is assumed to berS\ 2GM/c2 r

nslowly rotating so that the Schwarzschild metric is appro-
priate for calculating photon paths. The shape of the accre-
tion funnel is approximated as a radial cone with inner and
outer half-opening angles and respectively. Below aa

i
a
o
,

radiative shock at radial coordinate the column is opticallyr
tthick and radiation is emitted from the inner and outer

FIG. 1.ÈHollow cone model of the emission region. A radial hollow
cone with inner and outer half-opening angles and respectively, anda

i
a
o
,

its top at the radial coordinate radiates from the sides. The emission isrTeither assumed to be isotropic or to be a function I(d) of the angle d
between the direction of emission and the radial direction. Photon paths
are calculated in the Schwarzschild metric. In the drawing, the height and
width of the cone have been exaggerated for clarity.

walls. Details of the moundlike inner structure of this region
are not taken into account. The emission is either assumed
to be isotropic or to be a function I(d) of the angle d between
the direction of emission and the radial direction (which, in
the approximation of a radial cone, represents the direction
of the magnetic Ðeld that is also the direction of motion of
the accreted matter). The free-fall region above the shock is
treated as being optically thin both to free-free absorption
and to scattering. This represents the limiting case of
optimum visibility of the inner emission region that is
appropriate for low-frequency radiation in the extraordi-
nary mode. This limiting case is useful to point out the main
characteristics of the two-component beam pattern as
opposed to the other limiting case of complete obscuration
of the inner emission region that corresponds to the beam
patterns of the outsides of columns investigated by Ri†ert &

(1988). Between the emission at radial coordinateMe� sza� ros
r and the detection by an observer at the distance thed ? rSfrequency of the radiation is redshifted according to

u= \ u
S

1 [ rS
r

(4)

and the speciÐc intensity changes according to

I=(u=) \
Au=

u
B3

I(u) (5)

(Misner, Thorne, & Wheeler 1973). If the cone is small
enough, then redshift and intensity change are approx-
imately constant over the whole emission region. In the
computations presented below for phenomenological emis-
sion models on small cones (where no attempt is made to
investigate a dependence of the emission on height), redshift
and intensity change are taken to be constant. Their e†ect is
then to introduce an overall scale factor into the beam
pattern which is not taken into account in the results shown
below. If required for a more detailed emission model or a
taller cone, the position-dependent redshift and intensity
change can easily be incorporated into the computation.
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FIG. 2.ÈRay-casting method. The paths of light rays are retraced from a distant observer at to the emission points on the cone. The total Ñux isd ? rSobtained by summing up the Ñux contained in the resolved image. The total Ñux is a function of the viewing angle h. In the drawing, the height and width of
the cone have been exaggerated for clarity.

When the neutron star rotates, the viewing angle h onto
the magnetic pole number i changes with rotation angle '
according to

cos h \ cos #
o
cos #

i
] sin #

o
sin #

i
cos ('[ '

i
) , (6)

where is the angle between the axis of rotation and the#
oline of sight, is the angular distance of magnetic pole#

inumber i from the rotation axis, and is the instant'\'
iwhen the axis through pole i passes closest to the direction

of observation. When the observed Ñux of the emission
region as a function of h, i.e., the beam pattern, is known,
then pulse shapes can be calculated for arbitrary geometric
parameters. The computation of the beam pattern is done
here using ray-tracing. Ray-tracing is a standard technique
in computer graphics (Foley et al. 1990) which has been
modiÐed to include relativistic light deÑection (Nollert et al.
1989 ; Zahn 1991 ; Weiskopf 2000). For each value of h a
resolved image of the emission region is computed by
retracing the paths of light rays reaching a hypothetical
screen (see Fig. 2). When retracing the path leads to a point
on an emitting surface, the speciÐc intensity reaching the
respective point on the screen is computed from the point
and the direction of emission. The total Ñux detected from
viewing angle h is then obtained by summing up the Ñux
contained in the image.

The accuracy of the numerical computation was tested by
the comparison with analytically computed beam patterns
for (no light deÑection) and isotropic emission. In thisrS \ 0
case, the observed Ñux is proportional to the projected area
of the unshadowed part of the emitting surfaces. Figure 3
shows two comparisons for the inside component and the
outside component of a beam pattern, respectively, with the
parameter values and Ther

t
\ 1.05 r

n
, a

i
\ 0.1, a

o
\ 0.1.

formulae for the analytic beam patterns are given in the
Appendix.

An emission region model is characterized by four geo-
metric parameters and the beaming function :

r
n

rS
,
r
t

rS
, a

i
, a

o
, I(u, d) .

The computational expense in exploring this parameter
space can be reduced by using the beam patterns computed
for isotropic emission as transfer functions for an approx-
imate computation of the beam patterns for beamed emis-
sion. This is based on the observation that radiation
emitted with angles d in some small range con-d1¹ d ¹ d2tributes to the beam pattern only in a small range in h (see
Fig. 4). The relation between corresponding values of d and
h can be obtained by computing a single representative light
ray for each pair of angles. The values shown in Figure 4

FIG. 3.ÈComparison between analytically computed beam patterns (solid lines) and values computed by ray-casting (symbols) for and isotropicrS\ 0
emission. Left : beam pattern due to the inside of a radial cone with Right : beam pattern due to the outside of a radial cone withr

t
/r

n
\ 1.05, a

i
\ 0.1.

r
t
/r

n
\ 1.05, a

o
\ 0.1.
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FIG. 4.ÈRadiation emitted with angles d (between the direction of emission and the radial direction) in a small d-range contributes to the beam pattern
only in a small range of viewing angles h. The d-ranges shown are 5¡ wide and are centered on d \ 60¡, 65¡, and 70¡. The dashed lines mark the values of h
computed for three representative light rays as described in the text with d \ 60¡, 65¡, and 70¡. L eft : inner component, right : outer component of the beam
pattern. The parameters are andr

n
/rS\ 3.3, r

t
/r

n
\ 1.05, a

i
\ 0.1, a

o
\ 0.1.

(dashed lines) have been computed for light rays with d in
the middle of the d-ranges considered and starting midway
between and at 45¡ out of the plane of the cone axis andr

n
r
tthe observer. These values agree quite well with the maxima

of the contributions of the respective small d-ranges. The
computation of the approximate beam patterns for beamed
emission then proceeds as follows : for each value of h one
computes the corresponding value of d. The Ñux in the
beam pattern for isotropic emission is then scaledFiso(h)
with the beaming function I(d) to yield the Ñux in the beam
pattern for nonisotropic emission

F
I(d)(h)\ Fiso(h)I(d(h)) . (7)

Figure 5 gives a comparison between a full and an approx-
imate computation of the beam patterns for I(d)\ sin4 d
for the inner and outer components of the beam pattern
separately.

3. RESULTS

In generating the following results, the parameters have
been chosen in a range that may be suitable for X-ray pulsar
models. Starting from a basic model with r

n
/rS\ 3.3, r

t
\

and isotropic emission, the param-1.05r
n
, a

i
\ 0.1, a

o
\ 0.1,

eters are varied one at a time to display the inÑuence that
each one has on the shape of the beam pattern.

3.1. Inside Component of the Beam Pattern
Figure 6 shows the contribution that the inside of the

cone makes to the beam pattern of the basic model. For

comparison it also shows the beam pattern obtained for the
same geometry but with (i.e., no light deÑection). AtrS \ 0
the smallest values of h the two curves are nearly identical.
This is the result of the fact that light rays emitted nearly
radially su†er very little light deÑection. The nonrelativistic
beam pattern drops to zero at h \ 90¡ when the inside of
the cone disappears from view. Light deÑection shifts this
point of disappearance toward larger values of h while pre-
serving the rapid decline of the Ñux.

The dependence of the inside beam pattern on the mass of
the neutron star is further illustrated in the left column of
Figure 7 with beam patterns for 3.3, 2.5, 2.2, 2.1,r

n
/rS \ O,

and 2. When is larger, both the Ñux maximum and therSpoint of disappearance are shifted toward larger values of h.
In the middle column of Figure 7 the beam pattern of the

basic model is compared to beam patterns of cones that
have opening angles half and twice as large. In this case, the
position of the Ñux maximum changes, but the point of
disappearance is virtually independent of the opening angle.

The inÑuence of the cone height on the inside beam
pattern is considered in the right column of Figure 7 for

1.05, and 1.01. The position of the Ñux maximumr
t
/r

n
\ 1.1,

changes with cone height, but the point of disappearance
remains nearly the same.

3.2. Outside Component of the Beam Pattern
The contribution that the outside of the cone makes to

the beam pattern is shown in Figure 8 for the same param-

FIG. 5.ÈComparison between approximate and full calculations of a beam pattern for beamed emission with I(d)\ sin4 d. Solid line : approximate
calculation based on the beam pattern for isotropic emission ; symbols : full computation with ray-casting. Dashed line : beam pattern for isotropic emission.
L eft : inner component, right : outer component of the beam pattern. The geometric parameters are the same as in Fig. 4.
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FIG. 6.ÈInside component of the beam pattern of the ““ basic model ÏÏ
(solid line) in comparison with the beam pattern for the samerS \ 0
geometry (dashed line).

eter values that were used in Figure 7 for the inside beam
pattern.

The position of both the Ñux maximum and the point at
which the cone disappears behind the neutron star depend
sensitively on the ratio of the neutron star (Fig. 8, leftr

n
/rScolumn). If the star is sufficiently compact, the outside of the

cone may even be visible from all directions. A change in
opening angle or in cone height hardly changes the position
of the Ñux maximum (Fig. 8, middle and right columns). In
contrast to the inside beam pattern, however, opening angle
and cone height here have a noticeable inÑuence on the
point of disappearance.

3.3. Two-Component Beam Patterns
Depending on how thin the matter-carrying region is, the

inner opening angle may or may not be close to the outer
one. For simplicity, and to avoid introducing another

FIG. 7.ÈInside component of the beam pattern for di†erent parameter values. The upper plots show absolute values, the lower plots show the same curves
normalized so that the maximum equals unity. L eft : 3.3, 2.5, 2.2, 2.1, and 2 (left to right). Middle : 0.1, and 0.05 (top to bottom).r

n
/rS\ O, a

i
\ 0.2,

Right : 1.05, and 1.01 (top to bottom).r
t
/r

n
\ 1.1,

FIG. 8.ÈOutside component of the beam pattern for di†erent parameter values. The upper plots show absolute values, the lower plots show the same
curves normalized so that the maximum equals unity. L eft : 3.3, 2.5, 2.2, 2.1, and 2 (left to right). Middle : 0.1, and 0.05 (top to bottom).r

n
/rS\ O, a

i
\ 0.2,

Right : 1.05, and 1.01 (top to bottom).r
t
/r

n
\ 1.1,
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FIG. 9.ÈTwo component beam patterns for di†erent parameter values. The upper plots show absolute values, the lower plots show the same curves
normalized so that the maximum equals unity. L eft : 3.3, 2.5, 2.2, 2.1, and 2 (left to right). Middle : 0.1, and 0.05 (top to bottom). Right :r

n
/rS\ O, a

i
\ 0.2,

1.05, and 1.01 (top to bottom).r
t
/r

n
\ 1.1,

parameter, the two-component beam patterns in this
section are all computed in the limiting case of very thin
column walls for a

i
\ a

o
.

Figure 9 shows the complete beam patterns for the same
sets of parameters that were considered in °° 3.1 and 3.2.
The inside and outside beam patterns add up to a two-
component beam pattern with two maxima that may in
some cases nearly blend into one broad peak.

3.4. Beamed Emission
Radiative transfer calculations in static atmospheres

(Nagel 1981 ; & Nagel 1985) suggest that theMe� sza� ros
emission from the side of a column may be isotropic or may
be enhanced in the direction perpendicular to the magnetic

Ðeld. This is modeled here by the beaming functions

Iiso \ const , I1(d) \ sin2 d , I2(d) \ sin4 d . (8)

On the other hand, it has been suggested that high-velocity
infall near the border of the accretion column may be opti-
cally thick and then cause substantial beaming by aberra-
tion (Lyubarskii & Syunyuaev 1988). Since this can only
apply in a luminosity and frequency regime in which scat-
tering in the free-fall region cannot be neglected, the compu-
tation of the inside beam patterns a†ected by aberration is
strictly speaking outside the scope of this study, so that
the inside beam patterns shown in Figure 10 can give
only a rough indication of the expected e†ects of beaming.
The computation of the outside beam patterns is not

FIG. 10.ÈBeam patterns for beamed emission in comparison with beam patterns for isotropic emission. Upper row : beaming functions (solid line),Iiso I1(dashed line), and (small dashes). L ower row : beaming functions (solid line), (b \ 0.2, dashed line), (b \ 0.2, small dashes), (dotted line). Both rowsI2 Iiso I3 I4 I5show on the left hand side polar diagrams of the beaming functions, in the middle the inside components of the beam patterns, and on the right the outside
components of the beam patterns.
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subject to this caveat. Downward beaming is here modeled
by the beaming functions

I3(d)\ D3 , I4(d)\ D3sin4 d@ ,

I5(d)\ exp
C
[ (d [ d)2

b2
D

(9)

with the Doppler factor

D\ 1
c(1] b cos d)

, (10)

where corresponds to I@(u@, d@)\ const in the restI3(d)
frame of the matter, with d@ determined fromI4(d)

cos d@\ (b ] cos d)
(1] b cos d)

(11)

corresponds to I@(u@, d@)\ sin4 d@ in the rest frame of the
matter, and the Gaussian has the parametersI5(d) d \ 150¡,
b \ 30¡. The speciÐc forms of these beaming functions are
chosen ad hoc ; they simply serve to illustrate the implica-
tion of beamed emission for a range of directions and
degrees of beaming that may apply to radiation escaping
from the base of an accretion column.

As illustrated in Figure 10, beaming mainly decreases the
width of the maxima. Especially in the case of strong down-
ward beaming, each component of the beam pattern may
become quite narrow. Therefore beaming may substantially
decrease the degree to which the two maxima blend in the
combined beam pattern.

The points of disappearance of the inside and outside
beam patterns are not a†ected by beaming. They are deter-
mined by the geometric parameters only.

4. DISCUSSION

The beam pattern of a hollow cone has been studied for
radial cones of di†erent height and width, for isotropic and
beamed emission, and for di†erent values of mass and
radius of the neutron star. In this simpliÐed phenomeno-
logical model the inside and the outside of the hollow cone
radiate up to the radial coordinate while the upper partr

t
,

of the accretion stream does not radiate. Also, shadowing of
the emitting inner side of the column by the upper part of
the accretion column has been neglected. In a more detailed
model, shadowing should be taken into account. Depending
on the accretion rate and the size of the funnel, one should
expect scattering in the upper part of the column to alter the
inside beam pattern to a greater or lesser degree.

As shown in ° 3, a hollow accretion column has a two-
component beam pattern that in general exhibits two peaks
more or less clearly separated depending on the geometry
and on the beaming function. The small-angle component
that is due to the inside of the column drops to zero at a
viewing angle h around 100¡È110¡. The exact location of the
zero point depends sensitively on the ratio of ther

n
/rSneutron star and somewhat on the height and width of the

column, but not on the beaming function.
This structure closely resembles the features found in the

beam patterns that have been reconstructed from pulse pro-
Ðles of the binary X-ray pulsar Cen X-3 (Fig. 11 ; Kraus et
al. 1996). It is argued below that the properties of the beam
patterns suggest an interpretation of this source in terms of
hollow accretion columns.

The typical pulse proÐle of Cen X-3 shows a single peak
with a sharp rise and a more gradual decline ending in a

FIG. 11.ÈBeam patterns that have been reconstructed from the
observed pulse proÐles of Cen X-3 (Kraus et al. 1996) shown in Fig. 12 top
left (beam pattern drawn as a solid line) and top right (beam pattern drawn
as a dashed line). The beam patterns are normalized to unity at h \ 124¡.

shoulder (Fig. 12, top left ; White, Swank, & Holt 1983). On
several occasions a double-peaked pulse proÐle has been
detected at low energies (Fig. 12, top right ; Nagase et al.
1992). The single-peaked pulse proÐle is strongly asym-
metric, the double-peaked one moderately so. A decomposi-
tion analysis of a sample of 12 pulse proÐles including the
ones shown in Figure 12 has led to the following main
results (Kraus et al. 1996) : The complete data set is compat-
ible with a scenario according to which the pulse proÐle
from a single emission region is symmetric (or so weakly
asymmetric that it does not noticeably contribute to the
asymmetry of the observed pulse proÐle), and where
the asymmetry of the observed pulse proÐle is caused by
the nonantipodal location of the magnetic poles. In this

FIG. 12.ÈTop row : two observed pulse proÐles of Cen X-3 (White,
Swank, & Holt 1983 ; Nagase et al. 1992). The pulse proÐles are normalized
so that the Ñux maximum is unity. Middle row : contribution of one emis-
sion region to the pulse proÐle. Bottom row : contribution of the other
emission region to the pulse proÐle. The sum of the two contributions gives
exactly the pulse proÐle shown above them. Interpretation of the contribu-
tions in terms of hollow accretion columns : Ñux coming from the outside of
a column is drawn in a solid line, Ñux coming from the inside in a dashed
line.
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scenario there is only one set of geometric parameters that
is acceptable for the whole sample of pulse proÐles of Cen
X-3 : The emission regions are located at and#1\ 18¡

with respect to the rotation axis and their di†er-#2\ 161¡
ence in azimuthal angle is */\ 147¡, which means that
there is an o†set of 10¡ between the point that is antipodal
to the Ðrst magnetic pole and the location of the second
magnetic pole. These values are obtained with the assump-
tion that the direction of observation is equal to the inclina-
tion of the system (Nagase 1989). The two#

o
\ i\ 75¡~13]`12]

emission regions have the same beam pattern that in the
course of one revolution of the neutron star is sampled for
57¡ \ h \ 124¡. This visible part of the beam pattern has
been reconstructed and consists of two components, the
relative size of which varies with energy and between obser-
vations. Figure 11 shows the beam patterns that have been
deduced from the pulse proÐles in Figure 12 and that repro-
duce these pulse proÐles with the geometry given above.1
These results have been obtained based on symmetry con-
siderations only. There is no model of the emission region
involved.

Several of the reconstructed beam patterns show a
minimum with (nearly) zero Ñux (like the ones displayed in
Fig. 11 that were chosen for display for this reason), so the
two components are well separated and the point at which
the Ñux of the left component drops to zero can be esti-
mated. This zero point coincides very well for di†erent
beam patterns, even though the pertinent energy ranges and
pulse shapes are quite di†erent, and is located at h B 105¡.
This value is within the range where the beam pattern from
the inside of a hollow accretion column is expected to drop
to zero. Since the disappearance of the inner side from view
is a geometric e†ect, the location of the zero point should be
independent of photon energy in accordance with what is
observed from Cen X-3.

It is therefore plausible to identify the left component of
the reconstructed beam pattern with the inside beam
pattern of a hollow accretion column. A zero point at
h \ 105¡ requires for a small column. This corre-r

n
/rS\ 5

sponds to a radius of km for a one solar massr
n
\ 15

neutron star as determined for Cen X-3 (Nagase 1989). (It
should be pointed out, however, that the direction of obser-
vation involves a fairly large uncertainty and that a#

odi†erent value for this angle would predict a di†erent loca-
tion of the zero point of the left component of the recon-
structed beam pattern. Also, substantial shadowing by the
upper part of the accretion column would shift the zero

1 The decomposition analysis gives the beam pattern only up to the
following ambiguity. If b(h) is the reconstructed beam pattern, then either
b(h) or its ““ mirror image ÏÏ is the true beam pattern.b8 (h)\ b(180¡ [ h)

point that is predicted for the inside beam pattern towards a
smaller value of the viewing angle h.)

If the right component of the reconstructed beam pattern
of Cen X-3 is identiÐed with the outside beam pattern of a
hollow accretion column, the emission from the outer side
must be beamed downward to produce the observed steep
rise in Ñux (compare with Fig. 10 for the e†ects of beaming).
The inside component shows evidence of beaming as well ;
the rise in Ñux below h B 65¡ is steeper than it would be for
isotropic emission and indicates a comparative lack of radi-
ation emitted upward.

The interpretation in terms of a hollow accretion column
is also supported by the spectra derived from the recon-
structed energy-dependent beam patterns (Kraus et al.
1996). They show that there are two di†erent spectral
regimes corresponding to viewing angles below and above
h B 100¡, respectively. Such di†erences in spectrum Ðnd a
natural explanation if the two components originate in dif-
ferent locations with di†erent physical conditions in
general. Conditions on the inside and the outside of the
column di†er in several important ways. Since the outside is
radiating freely whereas the inside is strongly irradiated,
one may expect di†erences in plasma temperature. Also, on
the outside the deceleration of the accreted matter may be
weaker so that aberration is stronger.

With the geometry given above and when the beam
pattern below and above h \ 105¡ is attributed to the inside
and outside of a hollow accretion column respectively, then
the viewing angle onto one emission region varies between
h \ 57¡ and h \ 93¡, so that the observer receives Ñux only
from the inside of this column (Fig. 12, middle row), while
the viewing angle onto the other emission region varies
between h \ 86¡ and h \ 124¡, so that we see the inside and
the outside of the column in turn (Fig. 12, bottom row). As
illustrated in Figure 12, this means that the main peak of
the total pulse proÐle contains a major contribution from
the outside of one of the columns, whereas the shoulder (or
the second peak) and the unmodulated Ñux come from the
insides of both columns.

This study has shown that the beam pattern of a hollow
cone with two components due to the inside and the outside
of the column is quite di†erent from the beam pattern of a
solid column. It has more structure than the one-
component beam patterns of polar caps, polar rings, or
columns. Furthermore, it provides an interpretation of the
pulse proÐles of Cen X-3.

Thanks to Hanns Ruder, Matthias Stehle, and Ste†en
Blum for helpful discussions and to Corvin Zahn for the use
of his ray-tracing code. This work was partially supported
by the DFG.

APPENDIX

ANALYTIC BEAM PATTERNS

Analytic beam patterns for emission from the inner or outer sides of a column in the shape of a radial cone with
half-opening angle a are computed for (no light deÑection) and uniform isotropic emission between radial coordinatesrS\ 0

(the stellar surface) and (the upper boundary of the optically thick emitting region at the base of the column).r
n

rTA resolved image of the emission region appropriate for a distant observer is obtained by parallel projection onto a plane
perpendicular to the line of sight (deÐned by the viewing angle h as illustrated in Fig. 2). For uniform isotropic emission, the
total Ñux observed is proportional to the area that the emitting surface covers in the projected image.



I

y

x

yt

yn

II III

No. 1, 2001 HOLLOW ACCRETION COLUMNS 297

A1. INSIDE BEAM PATTERN

The luminous surface is the inside wall of a radial cone. On the projected image (see Fig. 13), the luminous surface is
bounded without by the upper rim of the column that appears as an ellipse with half-axes

a
t
\ r

t
sin a, b

t
\ r

t
sin a cos h . (A1)

Surrounded by the luminous inside wall is the polar cap of the neutron star that does not emit radiation. If the viewing angle h
is small enough for the polar cap to be in view, then the projection of the polar cap takes up part of the area inside the outer
rim ellipse. The polar cap is bounded by a circle of radius that is projected onto an ellipse with half-axesr

n
sin a

a
n
\ r

n
sin a, b

n
\ r

n
sin a cos h . (A2)

This polar cap ellipse is therefore a second boundary for the luminous projected surface.
The inside of the cone is visible between h \ 0 and h \ n/2. This range can be subdivided into three regimes (Fig. 13) :

I : For h ¹ a the entire polar cap ellipse is visible. The projected luminous area is

A
I
\ na

t
b
t
[ na

n
b
n

. (A3)

II : For witha ¹ h ¹ h1

tan h1\ r
t
] r

n
r
t
[ r

n
tan a , (A4)

part of the polar cap ellipse is visible. With the coordinate axes of Figure 13 that are centered in the center of the
neutron star, the centers of the ellipses lie at

y
t
\ r

t
cos a sin h, y

n
\ r

n
cos a sin h , (A5)

respectively, and the ellipses intersect at (^x1, y1) :

y1\ (r
t
] r

n
) sin (h [ a) sin (h ] a)

2 cos a sin h
, x1\ a

n

S
1 [ (y1[ y

n
)2

b
n
2 . (A6)

The section of the upper rim ellipse that is above has the areay \ y1

A
t
(y1) \ a

t
b
t
arccos

Ay1[ y
t

b
t

B
[ x1(y1[ y

t
) , (A7)

and an analogous expression holds for the area of the polar cap ellipse above The projectedA
n
(y1) y \ y1.luminous area is then

AII\ A
t
(y1) [ A

n
(y1) . (A8)

III : For the polar cap is invisible, being hidden behind the column wall. The luminous area ish1¹ h ¹n/2

AIII\ na
t
b
t
. (A9)

The above argument applies if the column is not too broad and/or small. Since the polar cap surface is in the shape of a

FIG. 13.ÈComputation of the analytic inside beam pattern : the projected luminous surface (shaded area) in regimes I, II, and III. For clarity, the height
and width of the cone are greatly exaggerated compared with the model considered in ° 2.
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section of a sphere, it is elevated above the bounding circle of the polar cap. Viewed from the side, the rear part of the
bounding circle may be hidden behind the top of the cap. In this case, the polar cap contributes a boundary to the luminous
area that is partly caused by its boundary circle and is partly made up of points on the cap. This case of a composite boundary
is excluded if

cos 2a º
r
n
r
t
, (A10)

in which case the polar cap is entirely hidden behind the column wall for those viewing directions in which a composite
boundary would exist.

A2. OUTSIDE BEAM PATTERN

The luminous surface is the outer wall of a radial cone. It is visible between h \ a and the viewing angle beyondh \ h3,which the column is eclipsed by the star. Eclipse of the whole column is possible if

r
t
sin a ¹ r

n
(A11)

and then occurs at

h3\ n
2

] a ] arccos
r
n
r
t
. (A12)

This range of viewing angles can be subdivided into four regimes (Figs. 14 and 15) :

I : For a ¹ h ¹ n/2, no part of the luminous surface is eclipsed by the star. The projected luminous surface is
bounded above and below by the upper rim ellipse and the polar cap ellipse with sizes and positions as given in
equations (A1), (A2), and (A5). It is bounded on the sides by the projections of the generatrix of the cone, which
appear as straight lines tangent to both ellipses. The point of contact with the upper rim ellipse, determined from
the condition that the tangent to the ellipse at that point is in the radial direction, is (^x

u
, y

u
) :

y
u
\ r

t
cos2 a sin2 h [ sin2 a cos2 h

cos a sin h
, (A13)

x
u
\ a

t

S
1 [ (y

u
[ y

t
)2

b
t
2 , (A14)

and an analogous expression holds for the point of contact with the polar cap ellipse is to be replaced(xl, yl) (r
tby and and by With the area of the trapezoid with vertices atr

n
a
t
, b

t
a
n
, b

n
). (^x

u
, y

u
), (^xl, yl)

AT\ (x
u
] xl)(yu

[ yl) , (A15)

of the section of the upper rim ellipse that is below y
u

A3
t
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u
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t
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B
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u
(y

t
[ y

u
) , (A16)

FIG. 14.ÈComputation of the analytic outside beam pattern : the projected luminous surface (shaded area) in regimes I, III, and IV. For clarity, the height
and width of the cone are greatly exaggerated compared with the model considered in ° 2 .
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FIG. 15.ÈComputation of the analytic outside beam pattern : the projected luminous surface (shaded area) in regime II. For clarity, the width of the cone
has been chosen larger (and the height smaller) than in Fig. 14.

and of the section of the polar cap ellipse that is below given by an analogous expression, the area ofyl, A3
n
(yl),the projected luminous surface is

A
I
\ A

t
[ A3

t
(y

u
) ] A3

n
(yl) . (A17)

II : For n/2 ¹ h ¹ n/2 ] a, the base of the column is partly hidden by the star (Fig. 15). The lower boundary of the
luminous projected surface is in the middle given by the polar cap ellipse and on the sides given by the circle that
is the projection of the stellar surface. These di†erent sections of the boundary meet at the points of contact of
the polar cap ellipse and the stellar circle (^x2, y2) :

y2\ r
n

cos a
sin h

, x2\ Jr
n
2[ y22 . (A18)

The upper boundary of the luminous projected surface is deÐned by the upper rim ellipse as in regime I. If the
point is not eclipsed by the star, which is the case if with(x

u
, y

u
) h \ h2

h2\ arccos
C
[
S

1 [
Ar

n
r
t

B2
cos a

D
, (A19)

then the projection of the generatrix of the cone appears as a boundary to the side. Therefore, under the
condition

n
2

] a \ h2 , (A20)

the area of the luminous projected surface in regime II can be calculated from the area of the upper rim ellipse
above (eq. [A7]), the area of the triangle with vertices at and (0,0),y

u
, A

t
(y

u
) (^x

u
, y

u
)

Atr\ x
u
y
u
, (A21)

the segment of the circle that is contained between the projections of the generatrix of the cone,

AS \ r
n
2 arctan

Ax
u

y
u

B
, (A22)

the segment of the circle that is between the points of contact with the polar cap ellipse and above y2,

AS2 \ r
n
2 arctan (x2/y2) [ x2 y2 , (A23)

and the area of the polar cap ellipse that is above (after eq. [A7]) and is given byy2, An
(y2)

AII\ A
t
(y

u
) ] Atr[ AS ] AS2 [ A

n
(y2) . (A24)
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III : For the situation is very similar to regime II, except that the lower boundary of then/2 ] a ¹ h ¹ h2,luminous projected surface is simply given by the stellar circle. The area then is

AIII\ A
t
(y

u
) ] Atr[ AS . (A25)

IV: For the luminous projected surface is bounded from above by the upper rim ellipse and fromh2¹ h ¹ h3below by the stellar circle. The points of intersection between the ellipse and the circle are at (^x3, y3) :

y3\ r
t
cos a ] cos hJ1 [ (r

n
/r

t
)2

sin h
, x3\ Jr

n
2[ y32 . (A26)

The area of the luminous surface can be calculated from the area of the upper rim ellipse above (aftery3, At
(y3)eq. [A7]), and the section of the circle that is above y3,

AS3 \ r
n
2 arctan (x3/y3) [ x3 y3 , (A27)

and is given by

AIV\ A
t
(y3) [ AS3 . (A28)

The above equations are valid under the conditions of equations (A11) and (A20). If one or both of them do not hold, then the
calculations for h [ n/2 must be modiÐed.
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