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ABSTRACT
We use high-resolution N-body simulations to study the equilibrium density proÐles of dark matter

halos in hierarchically clustering universes. We Ðnd that all such proÐles have the same shape, indepen-
dent of the halo mass, the initial density Ñuctuation spectrum, and the values of the cosmological param-
eters. Spherically averaged equilibrium proÐles are well Ðtted over two decades in radius by a simple
formula originally proposed to describe the structure of galaxy clusters in a cold dark matter universe.
In any particular cosmology, the two scale parameters of the Ðt, the halo mass and its characteristic
density, are strongly correlated. Low-mass halos are signiÐcantly denser than more massive systems, a
correlation that reÑects the higher collapse redshift of small halos. The characteristic density of an equi-
librium halo is proportional to the density of the universe at the time it was assembled. A suitable deÐni-
tion of this assembly time allows the same proportionality constant to be used for all the cosmologies
that we have tested. We compare our results with previous work on halo density proÐles and show that
there is good agreement. We also provide a step-by-step analytic procedure, based on the Press-
Schechter formalism, that allows accurate equilibrium proÐles to be calculated as a function of mass in
any hierarchical model.
Subject headings : cosmology : theory È dark matter È galaxies : halos È methods : numerical

1. INTRODUCTION

It has been 25 years since the discovery that galaxies are
surrounded by extended massive halos of dark matter. A
variety of observational probesÈdisk rotation curves,
stellar kinematics, gas rings, motions of globular clusters,
planetary nebulae and satellite galaxies, hot gaseous atmo-
spheres, gravitational lensing e†ectsÈare now making it
possible to map halo mass distributions in some detail.
These distributions are intimately linked to the nature of
the dark matter, to the way halos formed, and to the cosmo-
logical context of halo formation.

Insight into these links came Ðrst from analytic studies.
Building on the early work of & Gott simi-Gunn (1972),
larity solutions were obtained by & GoldreichFillmore

and for the self-similar collapse of(1984) Bertschinger (1985)
spherical perturbations in an EinsteinÈde Sitter universe.
Such solutions necessarily resemble power laws in the viria-
lized regions. & Shaham andHo†man (1985) Ho†man

extended this analysis by considering open universes,(1988)
and by modeling as scale-free spherical perturbations the
objects that form by hierarchical clustering from power-law
initial density perturbation spectra [P(k) P kn]. They
argued that isothermal structure (o P r~2) should be
expected in an EinsteinÈde Sitter universe if n ¹ [2, and
that steeper proÐles should be expected for larger n and in
open universes.

Despite the schematic nature of these arguments, their
general predictions were veriÐed as numerical data became
available from N-body simulations of hierarchical cosmol-
ogies. Power-law Ðts to halo density proÐles in a variety of

1 Bart J. Bok Fellow.

simulations all show a clear steepening as n increases or the
density of the universe decreases (Frenk et al. 1985, 1988 ;

Salmon, & Zurek et al.Quinn, 1986 ; Efstathiou 1988 ;
Quinn, & Salmon et al.Zurek, 1988 ; Warren 1992 ; Crone,

Evrard, & Richstone An apparent exception was the1994).
work of Dekel, & Oemler who found thatWest, (1987),
galaxy cluster density proÐles show no clear dependence on
n.

SigniÐcant departures from power-law behavior were
Ðrst reported by et al. who noted that haloFrenk (1988),
proÐles in cold dark matter (CDM) simulations steepen
progressively with increasing radius. et al.Efstathiou (1988)
found similar departuresÈat odds with the analytic
predictionsÈin their simulations of scale-free hierarchical
clustering. They also noted that these departures were most
obvious in their best resolved halos. Similar e†ects were
noted by & Carlberg in a high-resolutionDubinski (1991)
simulation of a galaxy-sized CDM halo. These authors
found their halo to be well described by a density proÐle
with a gently changing logarithmic slope, speciÐcally the
one proposed by Hernquist (1990).

In earlier papers of this series, we used high-resolution
simulations to study the formation of CDM halos with
masses spanning about 4 orders of magnitude, ranging from
dwarf galaxy halos to those of rich galaxy clusters (Navarro,
Frenk, & White This work showed that the1995, 1996).
equilibrium density proÐles of CDM halos of all masses can
be accurately Ðtted over two decades in radius by the simple
formula
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where is a scale radius, is a characteristicr
s

d
c(dimensionless) density, and is the criticalocrit\ 3H2/8nG

density for closure. This proÐle di†ers from the Hernquist
model only in its asymptotic behavior at (it(1990) r ? r

stends to r~3 instead of r~4). Power-law Ðts over a restricted
radial range have slopes that depend on the range Ðtted,
steepening from [1 near the center to [3 at large r/r

s
.

This similarity between CDM halos of widely di†ering
mass is surprising in view of the strong dependence on
power spectrum shape reported in earlier studies. The e†ec-
tive slope of the CDM power spectrum varies from neff B[2 on galactic scales to on cluster scales, and soneff B [1
one might have expected shallower proÐles in galaxy halos
than in clusters. In fact, the opposite is true ; low-mass halos
are denser, i.e., they have higher values of than high-d

c
,

mass halos. This property reÑects the higher collapse red-
shift of the smaller systems. Power-law Ðts actually yield
steeper slopes for less massive halos both when carried out
at a Ðxed radius and when carried out at a Ðxed fraction of
the virial radius (see Figs. 3 and 4 of et al.Navarro 1996).

We argue below that the apparent relationship between
proÐle shape and initial power spectrum seen in earlier
work results from systematic di†erences in the character-
istic density of the halos chosen when comparing di†erent
models. This interpretation is reinforced by the recent work
of & Lacey and Bouchet, & WhiteCole (1996) Tormen,

who Ðnd that the proÐles of massive halos formed(1997),
from power-law spectra are well described by equation (1).
They also conÐrm the strong correlation between andd

chalo mass seen in our earlier work, and they Ðnd that, at a
given mass, halos are denser when n is larger. Thus, the
spectral index n seems to control the exact relationship
between characteristic density and halo mass, rather than
the e†ective slope of the density proÐle.

It is clear from this discussion that a comprehensive study
of this problem needs to consider the role of at least three
factors : the halo mass, the power spectrum of initial density
Ñuctuations, and the values of the cosmological parameters.
In this paper, we present the results of a large set of N-body
simulations designed speciÐcally to address these issues. We
consider a variety of hierarchical clustering models, includ-
ing CDM and power-law initial Ñuctuation spectra, as well
as di†erent values of the cosmological parameters and ".)0In each cosmology, we study halos spanning a large range
in mass, carefully choosing numerical parameters so that all
systems are simulated with comparable numerical
resolution.

The plan of the paper is as follows. Our numerical experi-
ments are described in In we present our results, and° 2. ° 3,
in we discuss them in the context of earlier work. In° 4 ° 5,
we summarize our main conclusions. In the Appendix, we
lay out the formulae necessary to calculate analytically the
density proÐle of an equilibrium halo of any mass in any
hierarchical cosmology.

2. NUMERICAL EXPERIMENTS

2.1. Cosmological Models
We analyze the structure of dark matter halos in eight

di†erent cosmologies. Five are EinsteinÈde Sitter ()0\ 1)
models with various power spectra : the standard biased
CDM spectrum (SCDM model : h \ 0.5,)0\ 1, p8\ 0.63)
and four power-law or ““ scale-free ÏÏ spectra with indices
n \ 0, [0.5, [1, and [1.5. Two additional models also

have power-law spectra (n \ 0 and [1), but in an open
universe The last model we consider is a low-()0\ 0.1).
density CDM model with a Ñat geometry (CDM" : )0\
0.25, "\ 0.75, h \ 0.75, (Here and throughoutp8 \ 1.3).
this paper, we express the cosmological constant " in units
of so that a low-density universe with a Ñat geometry3H02,has We also adopt the standard convention of)0] "\ 1.
writing the present Hubble constant as h km s~1H0\ 100
Mpc~1.)

The normalization of the CDM models is speciÐed by p8,the rms mass Ñuctuation in spheres of radius 8 h~1 Mpc.
Because of self-similarity, the normalization of the scale-free
models is arbitrary. The evolutionary state of these models
may be fully speciÐed by a single parameter, the current
value of the ““ nonlinear mass,ÏÏ This mass scale isM

*
(z).

deÐned by requiring that the variance of the linear over-
density Ðeld at redshift z\ 0, smoothed with a top-hat Ðlter
enclosing a mass should equal the square of theM \ M

*
,

critical density threshold for spherical collapse by redshift z :
") (see the Appendix for details on*02 [M

*
(z)]\ dcrit2 (z, )0,the computation of This deÐnition provides adcrit).““ natural ÏÏ way to scale the scale-free simulations to physical

units and to compare di†erent cosmological models. In
scale-free models, the mass scale deÐned by is theM

*
(z)

only physical scale, and therefore the structure of halos can
depend on mass only through the ratio M/M

*
.

2.2. Simulations
Large cosmological N-body simulations are required to

simulate the evolution of dark matter halos in their full
cosmological context. However, such simulations are not
generally well suited to explore a large range of halo masses.
This is true for the following reason : systems of di†ering
mass formed in a single simulation are resolved to di†ering
degrees. More massive systems are better resolved because
they contain more particles and because the gravitational
softening is a smaller fraction of the virial radius. These
systematic di†erences can introduce insidious numerical
artifacts in the mass trends that we wish to investigate. We
circumvent this problem by using the procedure outlined by

et al. Halos are Ðrst identiÐed in cosmo-Navarro (1996).
logical N-body simulations of large periodic boxes and then
resimulated individually at higher resolution. During the
resimulation, the remainder of the original simulation is
treated only to the accuracy needed to model tidal e†ects on
the halo of interest. The advantage of this procedure is that
numerical parameters can be tuned so that all halos are
simulated with comparable resolution. Its main disadvan-
tage is that only one halo is modeled per simulation, so that
many simulations are needed to compile a representative
halo sample.

2.2.1. Cosmological Simulations

The cosmological simulations were carried out using the
P3M code of et al. The desired initialEfstathiou (1985).
power spectrum was generated by using the Zeldovich
approximation to displace particles from a uniform initial
load. The uniform load we used was either a ““ glass ÏÏ con-
Ðguration or a cubic grid. For simulations(White 1996)
with power-law power spectra, the amplitude of the initial
displacements was chosen by setting the power of the per-
turbed density Ðeld to the white-noise level at the Nyquist
frequency of the particle grid. These simulations followed
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FIG. 1.ÈParticle plots illustrating the time evolution of halos of di†erent mass in an "\ 0, and n \ [1 cosmology. The box sizes of each column)0\ 1,
are chosen so as to include approximately the same number of particles. At the box size corresponds to about Time runs from top to bottom.z0\ 0, 6r200.Each snapshot is chosen so that increases by a factor of 4 between each row. Low-mass halos assemble earlier than their more massive counterparts. ThisM

*is true for every cosmological scenario in our series.

106 particles on a 1283 mesh and were stopped when the
nonlinear mass, corresponded to 1000È2000 particles.M

*
,

We identify this time with the present (z\ 0). Since clus-
tering evolves faster for more negative values of n, an expan-
sion factor of 9.5 was sufficient for n \ [1.5, whereas an
expansion factor of 90 was required for n \ 0 ()0\ 1).
Open models require even longer integrations, an expan-
sion factor exceeding 150 for n \ 0 and These)0\ 0.1.
simulations used the time-stepping and numerical scheme
described in et al. (Note, however, thatEfstathiou (1988).
the deÐnition of in that paper di†ers from the one weM

*use here.)
We ran two P3M simulations for each of our CDM

models. The SCDM runs followed 643 particles in periodic
boxes of 180 and 15 h~1 Mpc and were stopped when p8\
0.63 h~1 the time that we identify(M

*
B 1.6] 1013 M

_
),

with the present. The CDM" runs followed 106 particles in
boxes of 140 and 46.67 h~1 Mpc, until p8\ 1.3 (M

*
B 4.1

] 1013 h~1 M
_

).

2.2.2. Individual Halo Simulations

The halos that were to be resimulated at higher
resolution were selected randomly at z\ 0 from a list of
clumps identiÐed using a friends-of-friends group Ðnder
with linking length set to 10% of the mean interparticle

separation. We chose masses in the range for the0.1È10M
*power-law models and for the CDM models.0.01È100M

*(The mass range is larger for the CDM models because, in
this case, halos were chosen from two parent cosmological
simulations with di†erent box sizes.) Because we are inter-
ested the structure of equilibrium halos, we were careful not
to choose for analysis any halo that is far from virial equi-
librium. In practice, we analyze each resimulated halo at the
time between redshifts 0.05 and 0 when it is closest to
dynamical equilibrium, deÐned as the time when the ratio of
kinetic to potential energy is closest to 0.5 for material
within the virial radius. [Throughout this paper, we
measure halo masses, within a virial radius,M200, r200,
deÐned as the radius of a sphere of mean interior density

Halo circular speeds, are200ocrit. V200 \ (GM200/r200)1@2,also measured at this radius unless otherwise speciÐed.
Numerical experiments show that for )\ 1, this radius
approximately separates the virialized and infall regions

& Lacey For convenience, we continue to use(Cole 1996).
these deÐnitions when )0D 1.]

Once a halo is chosen for resimulation, the particles
within its virial radius are traced back to the initial condi-
tions, where a small box containing all of them is drawn.
This box is Ðlled with D323 particles on a cubic grid ; these
particles are then perturbed using the waves of the original
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FIG. 2.ÈDensity proÐles of one of the most massive halos and one of the least massive halos in each series. In each panel, the low-mass system is
represented by the leftmost curve. In the SCDM and CDM" models, radii are given in kiloparsecs (scale at top), and densities are in units of 1010 kpc~3.M

_In all other panels, the units are arbitrary. The density parameter, and the value of the spectral index, n, are given in each panel. The solid lines are Ðts to)0,the density proÐles using The arrows indicate the value of the gravitational softening. The virial radius of each system is in all cases 2 orders ofeq. (1).
magnitude larger than the gravitational softening.

P3M simulation, together with extra high frequency waves
added to Ðll out the power spectrum between the Nyquist
frequencies of the old and new particle grids. The regions
beyond the ““ high-resolution ÏÏ box are coarsely sampled
with a few thousand particles of radially increasing mass in
order to account for the large-scale tidal Ðelds present in the
original simulation.

This procedure ensures the formation of a clump similar
in all respects to the one selected in the P3M run, except for
the improved numerical resolution. The size of the high-
resolution box scales naturally with the total mass of each
system, and as a result all resimulated halos have about the
same number of particles within the virial radius at z\ 0,
typically between 5000 and 10,000. The extensive tests pre-
sented in et al. indicate that this number ofNavarro (1996)
particles is adequate to resolve the structure of a halo over
approximately two decades in radius. We therefore choose
the gravitational softening, to be 1% of the virial radiush

g
,

in all cases. (This is the scale length of a spline softening ; see
& White for a deÐnition.) The tree codeNavarro 1993

carries out simulations in physical, rather than comoving,
coordinates and uses individual time steps for each particle.
The minimum time-step depends on the maximum density
resolved in each case, but it was typically 10~5H0~1.

As discussed in et al. numerically con-Navarro (1996),
vergent results require that the initial redshift of each run,

should be high enough that all resolved scales in thezinit,initial box are still in the linear regime. In order to satisfy
this condition, we chose so that the median initial dis-zinitplacement of particles in the high-resolution box was
always less than the mean interparticle separation. Prob-
lems with this procedure may arise if is so high that thezinitgravitational softening (which is kept Ðxed in physical
coordinates) becomes signiÐcantly larger that the mean
initial interparticle separation. We found this to be a
problem only for the smallest masses, in theM [ M

*
,

n \ 0, model. In this case, the initial redshift pre-)0\ 0.1
scribed by the median displacement condition is zinit[ 700,
and the gravitational softening is then a signiÐcant fraction
of the initial box. This can a†ect the collapse of the earliest
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FIG. 3.ÈThe Ðts to the density proÐles of scaled to the virial radius, of each system and to the critical density of the universe at z\ 0. TheFig. 2, r200,solid and dashed lines correspond to the low- and high-mass systems, respectively. Note that low-mass systems are denser than high-mass systems near the
center, indicating that the characteristic density of a halo increases as the halo mass decreases.

progenitors of these systems and thus introduce spurious
e†ects. We therefore limit our investigation to inM Z M

*this particular cosmological model. Further tests of the
e†ects of particle number, time-step size, and gravitational
softening are given by et al. Their resultsTormen (1997).
conÐrm that the numerical parameters chosen here are ade-
quate to give stable and accurate results.

3. RESULTS

3.1. Time Evolution
illustrates the time evolution of halos of di†erentFigure 1

mass selected from the n \ [1 series. Time runs)0\ 1,
from top to bottom, and mass increases from left to right.
The box size in each column is chosen so as to contain
always approximately the same number of particles. The
redshifts of each snapshot have been chosen so that the
nonlinear mass increases by factors of 4 from toM

*
z2 z1and from to This Ðgure illustrates convincinglyz1 z0\ 0.

that low-mass halos complete their assembly earlier than
more massive systems.

3.2. Density ProÐles
shows spherically averaged density proÐles atFigure 2

z\ 0 for one of the least and one of the most massive halos
for each set of cosmological parameters. These halos span
almost 4 orders of magnitude in mass in the case of the
CDM models, and about 2 orders of magnitude in mass in
the power-law models. Radial units are in kiloparsecs for
CDM models (scale at the top) and are arbitrary in the
power-law panels. Density is in units of 1010 kpc~3 inM

_the CDM models and in arbitrary units in the others. The
solid lines are Ðts to each halo proÐle using equation (1).
This simple formula provides a good Ðt to the structure of
all halos over about two decades in radius, from the gravita-
tional softening (indicated by arrows in to about theFig. 2)
virial radius. The quality of the Ðt is essentially independent
of halo mass or cosmological model and implies a remark-
able uniformity in the equilibrium structure of dark matter
halos in di†erent hierarchical clustering models.

The solid and dashed lines in show the proÐleFigure 3
Ðts of but with the radius scaled to the virial radiusFigure 2,
of each halo. This scaling removes the intrinsic dependence
of size on mass (more massive halos are bigger) and allows a
meaningful comparison between halos of di†erent mass.
From the deÐnition of virial radius, the ““ concentration ÏÏ of
a halo, and the characteristic density, arec\ r200/rs, d

c
,
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FIG. 4.ÈThe circular velocity proÐles of the halos shown in Radii are in units of the virial radius, and circular speeds are normalized to the value atFig. 2.
the virial radius. The solid lines show the data from the simulations. All curves have the same shape : they rise near the center, until they reach a maximum,
and then decline at the outer edge. Low-mass systems have higher maximum circular velocities in these scaled units because of their higher central
concentrations. The dashed lines are Ðts using In each panel, the dotted line is the Ðt to the low-mass halo using a Hernquist proÐle. Note that thiseq. (3).
model Ðts rather well the inner regions of the halos but underestimates the circular velocity near the virial radius.

linked by the relation

d
c
\ 200

3
c3

[ln (1 ] c) [ c/(1 ] c)]
. (2)

Thus, at given halo mass (speciÐed by there is aM200),single free parameter in which may beequation (1),
expressed either as the characteristic density, or as thed

c
,

concentration parameter, c. This free parameter varies sys-
tematically with mass ; shows that c andFigure 3 d

cdecrease with increasing halo mass.
A universal density proÐle implies a universal circular

velocity proÐle, This is illustrated inV
c
(r) \ [GM(r)/r]1@2.

where we plot for the same systemsFigure 4, V
c
-proÐles

shown in As in radii are plotted in unitsFigure 2. Figure 3,
of the virial radius ; circular speeds have been normalized to
the value at the virial radius, The circular velocityV200.curve implied by isequation (1)

CV
c
(r)

V200

D2\ 1
x

ln (1] cx) [ (cx)/(1 ] cx)
ln (1] c) [ c/(1 ] c)

, (3)

where is the radius in units of the virial radius.x \ r/r200Circular velocities rise near the center, reach a maximum
at and decline near the virial radius. More(Vmax) xmaxD 2/c,

centrally concentrated halos (higher or higher c) are char-d
cacterized by higher values of The dashed lines inVmax/V200.show plots of with parameter valuesFigure 4 equation (3)

derived from the Ðts to the density proÐles of TheFigure 2.
dotted lines are Ðts using a model con-Hernquist (1990)
strained to match the location of the maximum of the V

c
-

The two Ðts are indistinguishable near the center, butcurve.
the Hernquist model underestimates near the virialV

cradius. This disagreement becomes more pronounced in
lower mass systems, for which and are larger.d

c
Vmax/V200

3.3. Mass Dependence of Halo Structure
The mass-density dependence pointed out above is

further illustrated in where we plot versus massFigure 5, d
c(expressed in units of for all the systems in each series.M

*
)

An equivalent plot, illustrating the mass dependence of the
concentration, c, is shown in (the upper left panel,Figure 6
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FIG. 5.ÈThe correlation between the mass of a halo and its characteristic density. Masses are given in units of the nonlinear mass scale (see text for aM
*deÐnition). Densities are relative to the critical value. Three curves are shown in each panel for di†erent values of the parameter f (see The Ðts areeq. [5]).

normalized to intersect at in the case )\ 1. This normalization is then used for the low-density models Note that for f \ 0.01, thisM200\M
*

()0\ 1).
procedure results in good Ðts to the results of the simulations in all cases.

corresponding to the SCDM model, is equivalent to Fig. 7
of et al. The characteristic density of a haloNavarro 1996).
increases toward lower masses in all the cosmological
models considered. This result supports the idea that the

relation is a direct result of the higher redshift ofM200-dccollapse of less massive systems, and it suggests a simple
model to describe the mass-density relation. This model
assigns to each halo of mass M (identiÐed at z\ 0) a col-
lapse redshift, f ), deÐned as the time at which halfzcoll(M,
the mass of the halo was Ðrst contained in progenitors more
massive than some fraction f of the Ðnal mass. With this
deÐnition, can be computed by simply using the Press-zcollSchechter formalism (e.g., & ColeLacey 1993),

erfc
G dcrit(zcoll) [ dcrit0
J2[*02( fM) [ *02(M)]

H
\ 1

2
, (4)

where is the linear variance of the power spectrum at*02(M)
z\ 0 smoothed with a top-hat Ðlter of mass M, is thedcrit(z)density threshold for spherical collapse by redshift z, and

[This deÐnition can be extended to halosdcrit0 \ dcrit(0).

identiÐed at any redshift by replacing by inz0 dcrit0 dcrit(z0)Assuming that the characteristic density of a halo iseq. (4).]
proportional to the density of the universe at the corre-
sponding then implieszcoll

d
c
(M o f ) \ C)0[1] zcoll(M, f )]3 , (5)

where C is a proportionality constant that might, in prin-
ciple, depend on f and on the power spectrum.

We will see below that f > 1 is needed for this argument
to give a good Ðt to our simulation data. In this limit,

and reduces to*02( fM)? *02(M), equation (4)

dcrit(zcoll) \ dcrit0 ] C@*0( fM) , (6)

where C@B 0.7. For f> 1, for all masses indcrit(zcoll) ? dcrit0
the range of interest, so that Sincedcrit(zcoll)P*0( fM).

is deÐned by this equa-M
*
(zcoll) *0[M*

(zcoll)]\ dcrit(zcoll),tion implies that the characteristic density of a halo is pro-
portional to the mean density of the universe at the time
when i.e., when the characteristic nonlinear massM

*
B fM,

is a Ðxed small fraction of the Ðnal halo mass. For scale-free
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FIG. 6.ÈSame as but for the concentration parameter cFig. 5,

models, this implies the same scaling thatd
c
PM~(n`3)@2,

links and the mean cosmic density at redshift z.M
*
(z)

shows the correlations predicted fromFigure 5 equation
for three values of the parameter f : 0.5, 0.1, and 0.01. The(5)

value of the proportionality constant, C( f ), is chosen in
each case in order to match the results of the EinsteinÈde
Sitter simulations for These values are given inM \M

*
.

The same values of C( f ) are used to plot the curvesTable 1.
in the panels corresponding to the low-density models.
Some interesting results emerge from an inspection of

and They are as follows :Figure 5 Table 1.

1. The agreement between the mass-density dependence
predicted by and the results of the EinsteinÈdeequation (5)
Sitter simulations improves for smaller values of f. This is
also true for the low-density models. Once C( f ) is Ðxed by
matching the results of the EinsteinÈde Sitter models, the
same value of C( f ) provides a good match to the low-
density models only if Interestingly, for f \ 0.01,f [ 0.01.
approximately the same value of the proportionality con-
stant, CB 3 ] 103, seems to Ðt all our simulations.

2. The characteristic density of halos decreases sys-M
*tematically for more negative values of the spectral index n.

At SCDM halos are the least dense in ourM \ M
*
, )0\ 1

series, less concentrated still than those corresponding to
n \ [1.5. This is consistent with the general trend because,
according to equations and the characteristic density(4) (5),
of a halo of mass is controlled by the shape of the powerM

*spectrum on scales This is about D1011 forDfM
*
. M

_f B 0.01, and the e†ective slope of the CDM spectrum on
this mass scale is neff D [2.

3. For the power-law models with n \ 0 and [1, the
characteristic density at a given increases asM/M

*
)0decreases. Such a trend is plausible since we expect the

collapse redshift of halos of a given mass to increase as )0decreases. On the other hand, halos formed in the low-
density CDM" universe are actually less dense than those
formed in the standard biased CDM model because d

cdepends not only on collapse redshift but also on (see)0 eq.
Although reducing increases the collapse redshift,[5]). )0the increase in from the factor can be out-d

c
(1] zcoll)3weighed by the change in In the CDM" model, the two)0.e†ects can combine to give a reduction in as decreases.d

c
)0(We remind the reader that is deÐned relative to thed

ccritical density rather than the mean density.)
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FIG. 7.ÈThe mass dependence of the maximum circular velocity of a halo. Velocity units are arbitrary in the power-law panels and km s~1 in the CDM
models (scale at top). Mass is in units of 1010 for CDM halos and in units of in the other panels. Power-law Ðts of the form are shown. TheM

_
M

*
M PV maxa

value of a and the rms scatter in the mass around the Ðt are indicated in each panel. Note that the dependence steepens for larger values of the spectralM-Vmaxindex n. The e†ect of the cosmological parameters on a seems to be rather small.

4. Each halo has a characteristic maximum circular
speed, (see that is strongly correlated with itsVmax eq. [3]),
mass. This is shown in where we also plot least-Figure 7,
squares Ðts of the form to the data in eachM200P V maxa
series. Consistent with the trends shown in Figures and5 6,
the correlation steepens as n increases ; we Ðnd a D 3.2È3.3
for CDM models and a [ 5 for n \ 0. Note also that the
correlations are extremely tight ; the rms scatter in log M200is less than D0.1 in all cases. This is in part a consequence of
the generally good Ðt of the density proÐle of equation (1).
The ratio increases only logarithmically with theVmax/V200central concentration of the halo and changes only by
about a factor of 2 as varies by 4 orders of magnituded

cbetween 103 and 107. As a result, the relationM200-Vmaxdoes not deviate much from the relation that, byM200-V200deÐnition, has zero scatter. This has important conse-
quences for the expected tightness of empirical correlations
between mass and characteristic velocity, such as the Tully-
Fisher relation. We intend to return to this issue in future
work.

The results in Figures support our conclusion that5È7
the characteristic density of a halo is controlled mainly by
the mean matter density of the universe at a suitably deÐned
time of collapse. One important test of this interpretation is
to measure directly in the simulations and to comparezcollthe result to To do this, we identify clumps atequation (5).
every output time using our friends-of-friends group Ðnder
with linking length set to 20% of the current mean inter-
particle separation. We then trace the particles in the most
massive clump identiÐed at z\ 0 (which typically has a
mean overdensity of D200) and, at each redshift, add up the
total mass in clumps that contain any of these particles and
that are individually more massive than 10% of the Ðnal
mass. We identify with the redshift at which this masszcollÐrst exceeds half of the Ðnal mass. This is roughly equiva-
lent to the analytic procedure outlined in forequation (4)
f \ 0.1. (We decided to use f \ 0.1 rather than f\ 0.01
because the smaller value results in very high collapse red-
shifts, often before the Ðrst output in the simulation.) The
main di†erence is that some of the mass from the high-
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FIG. 8.ÈThe characteristic density of all halos in our series as a func-
tion of the redshift at which half of the Ðnal mass is in collapsed progeni-
tors more massive than 10% of the Ðnal mass. The Ðlled circles correspond
to all our runs with the open circles to our runs with and)0\ 1, )0\ 0.1
"\ 0, and the asterisks to the CDM" runs "\ 0.75). The()0\ 0.25,
solid line shows the ““ natural ÏÏ scaling, expected if thed

c
P)0(1 ] z)3,

characteristic density of a halo is directly proportional to the mean matter
density of the universe at the time of collapse.

redshift progenitors ends up outside the virial radius at
z\ 0. This causes a slight bias of the measured collapse
redshifts toward higher values than the Press-Schechter
predictions.

TABLE 1

PARAMETERS IN USED TO PLOT THE FITS INEQUATION (5)
FIGURE 5

P(k) )0 " f C( f )

CDM . . . . . . . . . . 1.0 0.0 0.5 1.75] 104
1.0 0.0 0.1 7.44] 103
1.0 0.0 0.01 3.41] 103

CDM" . . . . . . . . 0.25 0.75 0.5 1.75] 104
0.25 0.75 0.1 7.44] 103
0.25 0.75 0.01 3.41] 103

n \ [1.5 . . . . . . 1.0 0.0 0.5 3.00] 104
1.0 0.0 0.1 1.08] 104
1.0 0.0 0.01 3.15] 103

n \ [1.0 . . . . . . 1.0 0.0 0.5 5.00] 104
1.0 0.0 0.1 1.38] 104
1.0 0.0 0.01 2.50] 103
0.1 0.0 0.5 5.00] 104
0.1 0.0 0.1 1.38] 104
0.1 0.0 0.01 2.50] 103

n \ [0.5 . . . . . . 1.0 0.0 0.5 1.25] 105
1.0 0.0 0.1 2.81] 104
1.0 0.0 0.01 2.81] 103

n \ 0.0 . . . . . . . . 1.0 0.0 0.5 4.00] 105
1.0 0.0 0.1 6.66] 104
1.0 0.0 0.01 4.00] 103
0.1 0.0 0.5 4.00] 105
0.1 0.0 0.1 6.66] 104
0.1 0.0 0.01 4.00] 103

The correlation between and obtainedd
c
/)0 (1] zcoll)3by using this procedure is shown in All the halosFigure 8.

in the EinsteinÈde Sitter models are shown as Ðlled circles,
those in open universes as open circles, and those in the
CDM" model as asterisks. The solid line is the relation
predicted by for C\ 5 ] 103. This is clearly anequation (5)
excellent approximation to the results of the numerical
simulations and conÐrms that the mean matter density of
the universe at the time of collapse is the main factor deter-
mining the characteristic density of a halo. Note that the
value of the proportionality constant is slightly lower than
the values given in for f \ 0.1. This di†erence com-Table 1
pensates for the slight bias toward higher collapse redshifts
introduced by our numerical procedure.

A summary of our results is presented in TheFigure 9.
panels on the left compile the Ðts (for f \ 0.01) to the mass
dependence of and c in the EinsteinÈde Sitter models. Thed

cpanels on the right compare the EinsteinÈde Sitter results
with those for low-density models. As noted above, the
typical density of halos increases with n. However, theM

*di†erence between models becomes less pronounced at
higher masses and is almost negligible at HalosM Z 10M

*
.

of a given in low-density universes can have eitherM/M
*lower or higher characteristic densities than their EinsteinÈ

de Sitter counterparts, depending on the competing e†ects
of the collapse redshift and the value of Note that all the)0.curves in use the same value, f\ 0.01, and essen-Figure 9
tially the same value of the proportionality constant
CB 3 ] 103 (see Thus, once calibrated for aneq. [5]).
EinsteinÈde Sitter model, it is possible to apply equations

and to predict the characteristic density of halos(4) (5)
formed in other hierarchically clustering models. In the
Appendix, we provide a detailed description of how to
compute numerically for a variety of cosmologies.d

c
(M)

3.4. Scatter in the Correlations
We now examine the origin of the scatter in the corre-

lations presented above. In particular, we explore whether
at Ðxed mass the dispersion in the measured values of isd

cdue to variations in the collapse redshift or in the global
angular momentum of the system. As shown by Figures 10
and the bulk of the scatter in at a given can be11, d

c
M/M

*attributed to small di†erences in the redshift of collapse.
shows that the from the solid-lineFigure 10 d

c
-deviations

Ðts in (i.e., those for f \ 0.01) correlate stronglyFigure 5
with deviations in the redshift of collapse. [The latter are
measured from least-squares Ðts to the vs.M200 (1] zcoll)correlations measured directly from the simulations.] Fur-
thermore, the two residuals seem to correlate just as
expected from i.e., * log logequation (5), d

c
\ 3* (1 ] zcoll).(We note that the magnitude of this scatter may not be fully

representative of the dispersion in halo properties corre-
sponding to each cosmological model, since the sample has
been selected so as to minimize departures from equi-
librium.) This relation is indicated by the solid line and is
seen to reproduce very well the trend observed in Figure 10.

shows the same of but nowFigure 11 d
c
-residuals Figure 10,

as a function of the scatter in the massÈrotation parameter
vs. j) correlation. (The rotation parameter is deÐned(M200by j \ J oE o1@2/GM5@2, where J is the angular momentum

and E is the binding energy of the halo. The median j in our
series is D0.04, in good agreement with previous studies.)
We Ðnd no discernible correlation between and j, orM/M

*between the and j-residuals This providesd
c
- (Fig. 11).
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FIG. 9.ÈA summary of the mass dependence of and c in our di†erent cosmological models. Mass is given in units of the nonlinear mass scale Thed
c

M
*
.

curves are labeled in the upper plots, and the same line types are used in the bottom plots. The symbols in the lower right panel show the correlation between
c and mass found by & Lacey with open squares for n \ [1, and Ðlled squares for n \ 0, These results should be compared withCole (1996), )0\ 1 )0\ 1.
the lower dashed curve and the lower dot-dashed curve in the same panel, respectively. Because of their poorer numerical resolution, Cole & LaceyÏs halos
are signiÐcantly less concentrated than the ones in our study.

further evidence supporting our contention that the redshift
of collapse is the primary factor determining the character-
istic density of a halo.

4. COMPARISON WITH PREVIOUS WORK

The main conclusion of our study, that the shape of halo
density proÐles is independent of cosmological context,
appears to contradict previous work on this subject. As
discussed in a strong dependence of the slope of the° 1,
density proÐle on the spectral index n and the density
parameter has been established by a number of analytic)0and numerical studies. We now show that our results
actually include and extend those of previous workers, and
we o†er an attractive explanation for some discrepancies
found in the literature.

We Ðrst address the claim by et al.Quinn (1986),
et al. et al. and et al.Efstathiou (1988), Zurek (1988), Warren

that halo density proÐles steepen with increasing(1992)
values of the spectral index n in an EinsteinÈde Sitter uni-
verse. This claim is based on the discovery that circular
velocity proÐles of galaxy-sized halos are relatively Ñat for

n B [2 (or for SCDM; et al. but decline pro-Frenk 1985)
gressively faster at large r for larger n. shows thatFigure 12
we Ðnd the same trend if we analyze our data in the same
fashion as these authors. In this Ðgure, we plot, in linear
units, the of an halo for di†erent values of n.V

c
-proÐle M

*Each curve has been computed using and theequation (3)
values of c obtained from the Ðts presented in Figure 9.
Since all these halos have the same mass, they also have the
same virial radius and circular speed, and respec-r200 V200,tively, which we have used as normalizing factors. The
linear units in obscure the fact that the form of theFigure 12
curves is the same in all cases, and these linear units encour-
age one to conclude, as did previous authors, that halo
rotation curves steepen with increasing n. In fact, this trend
is present because halos collapse earlier, and so areM

*denser, for larger values of n.
We note that the trend with n in is sensitive toFigure 12

the choice of halo mass. If we had used halos with M \ M
*
,

the trend would have been stronger. On the other hand,
very massive halos have similar characteristic(M Z 10M

*
)

densities, irrespective of n (see Thus, if we hadFig. 9).
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FIG. 10.ÈThe from the Ðts shown in (for f \ 0.01)d
c
-deviation Fig. 5

plotted vs. the deviation from the mean relation between the collapse
redshift, and the mass of a system. Note that systems1 ] zcoll (Fig. 8),
assembled earlier (later) than the average tend to have characteristic den-
sities above (below) the mean. The correlation between the andd

c
1 ] zcollresiduals follows the ““ natural ÏÏ scaling, * log log asd

c
\ 3* (1] zcoll),shown by the solid line. Only the results corresponding to are)0\ 1

shown.

plotted very massive halos in we would haveFigure 12,
concluded that the density proÐle depends only weakly on n
(at least for This is reminiscent of the claim by)0\ 1).

et al. that the structure of galaxy cluster halos isWest (1987)
independent of n in EinsteinÈde Sitter universes. Our
analysis suggests an explanation for this apparently discrep-
ant result. By considering only the most massive systems in

FIG. 11.ÈThe in relative to the solid curve Ðtd
c
-residuals Fig. 5

( f \ 0.01) plotted vs. the residuals in the correlation. This ÐgureM200-jshows that the scatter in at a given mass cannot be attributed to thed
ce†ects of rotation. All halos with are included in this plot.)0\ 1

FIG. 12.ÈCircular velocity proÐles of halos formed in simulationsM
*with di†erent power spectra in an EinsteinÈde Sitter universe. The curves

were computed using and the values of the concentration c wereeq. (3),
obtained from the Ðts in Radii are in units of the virial radius, andFig. 9.
circular speeds in units of the circular velocity at the virial radius. Note
that, because of the use of linear units, the fact that all curves have the same
shape is not immediately apparent.(eq. [3])

their simulations, West et al. focused on a mass range where
the dependence of on n is minimal, and so they concludedd

c(correctly) that cluster proÐles depend very weakly on the
initial power spectrum.

A similar explanation accounts for the weak dependence
of the halo density proÐle on the spectral index n and on )0reported by et al. These authors chose toCrone (1994).
combine the 35 most massive clumps in each of their
cosmological simulations in order to produce an ““ average ÏÏ
density proÐle for each value of n and They then Ðtted)0.power laws of the form o(r) P rc to these proÐles in the
radial range corresponding to density contrasts between
100 and 3000. For this procedure yielded c-values)0\ 1,
that decrease from [2.2 to [2.5 as n increases from [2 to
0 (see the curve labeled ““ EdS ÏÏ in their Fig. 4). Our results
show that this weak trend is a consequence of the averaging
procedure they adopted. The shape of the halo mass func-
tion depends strongly on n and is increasingly peaked
around for larger values of n. Thus, combining theM B M

*35 most massive clumps in a simulation results in di†erent
““ e†ective ÏÏ masses for di†erent values of n, with a bias
toward larger values of for more negative values of n.M/M

*By applying the same selection procedure as Crone et al. to
our own cosmological simulations, we Ðnd that the median
mass of these halo ensembles increases from for n \ 0DM

*to for n \ [1.5. As illustrated in ÐttingD6M
*

Figure 13,
power laws to the density proÐles of these ““ average ÏÏ halos
results in a weak steepening with n similar to the trend
reported by Crone et al. The slopes of cD [3 that they
found for low-density models are also easily understood,
since in these cases they Ðt a radial range that extends well
outside our nominal virial radius r200.

Our results are also in agreement with the recent work by
& Lacey and et al. whoCole (1996) Tormen (1997),
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FIG. 13.ÈA comparison between our density proÐles and the power-law Ðts of et al. The region Ðtted by these authors, corresponding toCrone (1994).
densities between 100 and 3000, is shown by the dotted lines. Over this region, our results (solid lines) and the power-law parameterization adopted by Crone
et al. (dashed lines) are consistent. The proÐles shown by the solid lines correspond to (n \ [1.5), (n \ [1), (n \ [0.5), andM \ 6M

*
M \ 4M

*
M \ 2M

*(n \ 0), as discussed in the text.M \M
*

analyzed the structure of massive halos in scale-(M [ M
*
)

free universes. The general correlations with mass that they
report (more massive halos tend to be less centrally concen-
trated than less massive halos) agree well with the results we
present in At a given halo mass, however, Cole &° 3.
LaceyÏs halos are signiÐcantly less concentrated than ours.
For example, for halos, they Ðnd cD 12 and D17 forM

*n \ [1 and 0, respectively compared with cD 17()0\ 1),
and D30 in our simulations (see connected symbols in the
lower right panel of On the other hand, the results ofFig. 9).

et al. are in very good agreement with ours ;Tormen (1997)
they Ðnd cD10 for a halo formed in an n \ [1,10M

*universe, which compares well with cD 9 that we)0\ 1
Ðnd for a similar system.

As discussed in detail by Tormen et al., the discrepancy
between our results and those of Cole & Lacey is likely to
be due in part to the poorer numerical resolution of their
simulations. Indeed, their simulations used gravitational
softenings that are 2È3 times larger than ours and time steps
that are also signiÐcantly longer than the typical values in
our simulations. Both of these e†ects can artiÐcially lower
the central concentration of a halo. A concurrent factor may
be the averaging procedure adopted by Cole & Lacey.

These authors constructed average density proÐles by co-
adding all halos of similar mass identiÐed in their cosmo-
logical simulations, regardless of their dynamical state. This
sample contains a number of unrelaxed systems and
ongoing mergers where substructure and double centers can
bias the results of the Ðtting procedure toward lower con-
centrations.

We can test directly for the e†ects of these various factors
by applying the averaging procedure of Cole & Lacey to
halos identiÐed in our own P3M cosmological simulations
(see and comparing them with the results of the° 2.2.1)
individual halo runs. We restrict this comparison to the
most massive halos in each run, since theseM Z 10M

*
,

systems have a large number of particles and a comparable
numerical resolution to that of Cole & Lacey. The compari-
son conÐrms that the central concentration of halos can be
signiÐcantly underestimated as a result of the factors men-
tioned above. The magnitude of the e†ect is sensitive to n
and the concentration c can be underestimated by up to)0 ;
a factor of D3 for n \ 0 and but by less than D1.5)0\ 0.1,
for n \ [1 and We conclude that the disagreement)0\ 1.
between our results and those of Cole & Lacey is likely to
be the result of the combined e†ect of their halo selection
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and averaging procedures and their poorer numerical
resolution.

5. DISCUSSION

Our results suggest that equilibrium dark halos formed
through dissipationless hierarchical clustering have density
proÐles with a universal shape that does not depend on
their mass, on the power spectrum of initial Ñuctuations, or
on the cosmological parameters and ". It appears that)0mergers and collisions during halo formation act as a
““ relaxation ÏÏ mechanism to produce an equilibrium that is
largely independent of initial conditions. This mechanism
must operate rapidly since the similarity between proÐles
extends to the virial radius. These properties are character-
istic of the ““ violent relaxation ÏÏ process proposed by

to explain the regularities observed inLynden-Bell (1967)
the structure of elliptical galaxies, and it is interesting to
note that our universal proÐle is similar to the Hernquist
proÐle that gives a good description of elliptical galaxy pho-
tometry. The two di†er signiÐcantly only at large radii,
perhaps because ellipticals are relatively isolated systems
whereas dark halos are not. & White suggestSyer (1996)
that a universal proÐle may be understood as a Ðxed point
for a process of repeated mergers between unequal objects.
Their analysis of this process predicts a dependence on the
initial power spectrum that seems stronger, however, than
that seen in our numerical data.

Our simulations suggest that the density proÐle of an
isolated equilibrium halo can be speciÐed quite accurately
by giving two parameters : the halo mass and the halo char-
acteristic density. Furthermore, in any particular hierarchi-
cal model, these parameters are related in such a way that
the characteristic density is proportional to the mean
cosmic density at the time when the mass of typical nonlin-
ear objects was some Ðxed small fraction of the halo mass.
The characteristic density thus reÑects the density of the
universe at the collapse time of the objects that merge to
form the halo core. With this interpretation, we are able to
Ðt the mass-density relation for equilibrium halos in all the
cosmological models we have considered. In addition, it is
possible to calculate the mass-density relation in any other
hierarchical model (see the Appendix). It is difficult to

imagine a simpler situationÈhalos of all masses in all hier-
archical cosmologies look the same, and their characteristic
densities are just proportional to the cosmic density at the
time they ““ formed.ÏÏ

Our results extend the radial range over which dark halo
structure can reliably be determined to more than two
decades. The central regions of our models have densities of
order comparable to those in the luminous parts of106ocrit,galaxies and in the central cores of galaxy clusters. As a
result, a variety of direct observational tests of our predic-
tions are available. In et al. we discussedNavarro (1996),
several of these in the context of the standard CDM
cosmogonyÈrotation curves of giant and dwarf galaxies,
satellite galaxy dynamics, hot gaseous atmospheres around
galaxies and in clusters, strong and weak gravitational
lensing. All provide interesting constraints. We will not
pursue these issues here, however, because they would take
us too far from our primary goal, namely, the presentation
of a simple and apparently general theoretical result : hierar-
chical clustering leads to a universal halo density proÐle just
as it leads to universal distributions of halo axial ratios and
halo spins ; none of these properties depend strongly on the
power spectrum, on ), or on " (see & Lacey andCole 1996
references therein). Of course, a comparison of the predicted
halo structure with observation should provide strong con-
straints on the parameters that deÐne particular hierarchi-
cal cosmogonies, and perhaps on the hierarchical clustering
paradigm itself. We expect to come back to these issues in
future work.
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APPENDIX

STEP-BY-STEP CALCULATION OF THE DENSITY PROFILE OF A DARK MATTER HALO

In this Appendix, we describe in detail the calculation of the parameters that specify the density proÐle of a dark halo of
mass M. This calculation is applicable to EinsteinÈde Sitter "\ 0), open "\ 0), and Ñat()0\ 1, ()0\ 1, ()0 ] "\ 1)
universes. We provide approximate Ðtting formulae that are valid for power-law and CDM initial density Ñuctuation spectra.

A halo of mass M identiÐed at can be characterized by its virial radius,z\ z0

r200 \ 1.63] 10~2
A M
h~1 M

_

B1@3C )0
)(z0)

D~1@3
(1 ] z0)~1 h~1 kpc , (A1)

or by its circular velocity,

V200\
AGM
r200

B1@2\
A r200
h~1 kpc

BC )0
)(z0)

D1@2
(1 ] z0)3@2 km s~1 . (A2)

The density proÐle of this system is fully speciÐed by its characteristic density and is given by (seed
c

eq. [1])

o(r) \ 3H02
8nG

(1 ] z0)3
)0

)(z0)
d
c

cx(1 ] cx)2 , (A3)
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where and c is the concentration parameter, a function of given in The corresponding circularx \ r/r200 d
c

equation (2).
velocity proÐle, is given byV

c
(r),

CV
c
(r)

V200

D2\ 1
x

ln (1] cx) [ (cx)/(1 ] cx)
ln (1] c) [ c/(1 ] c)

, (A4)

using the concentration c as a parameter.
The characteristic density is determined by the collapse redshift which is given by (seezcoll, eq. [4])

dcrit(zcoll)
dcrit(z0)

\ dcrit0 [)(zcoll)]
dcrit0 [)(z0)]

D(z0, )0, ")
D(zcoll, )0, ")

\ 1 ] 0.477
dcrit(z0)

J2[*02( fM) [ *02(M)] . (A5)

Here D(z, ") is the linear growth factor (normalized to unity at z\ 0) and can be written as)0,

1/(1 ] z) if )0\ 1 and "\ 0 ,
D(z, )0, ") \

7
F1(w)/F1(w0) if )0\ 1 and "\ 0 , (A6)
F2(y)F3(y)/F2(y0)F3(y0) if )0] "\ 1 ,

where we have used the following auxiliary deÐnitions :

w0\ 1
)0

[ 1 , (A7)

w\ w0
1 ] z

, (A8)

F1(u) \ 1 ] 3
u

] 3(1 ] u)1@2
u3@2 ln [(1] u)1@2 [ u1@2] , (A9)

y0\ (2w0)1@3 , (A10)

y \ y0
1 ] z

, (A11)

F2(u) \ (u3] 2)1@2
u3@2 , (A12)

and

F3(u) \
P
0

uA u@
u{3] 2

B3@2
du@ . (A13)

A good numerical approximation to the critical threshold for spherical collapse is given by

0.15(12n)2@3 if )0\ 1 and "\ 0 ,
dcrit0 ()) \

7
0.15(12n)2@3)0.0185 if )0\ 1 and "\ 0 , (A14)
0.15(12n)2@3)0.0055 if )0] "\ 1 ,

which can be used to compute "). Finally, requires the variance of thedcrit(z0) \ dcrit0 [)(z0)]/D(z0, )0, equation (A5) *02(M),
power spectrum on mass scale M, extrapolated linearly to z\ 0. In the case of a power-law spectrum of initial density
Ñuctuations, P(k) P kn, this is simply

*02(M) \ dcrit0
C M
M

*
(z\ 0)

D~(n`3)@6
, (A15)

where we have normalized the spectrum by the present nonlinear mass. A CDM spectrum is usually normalized byM
*
(z\ 0),

the rms mass Ñuctuations within a sphere of radius 8 h~1 Mpc, and its variance can be approximated byp8,
*0(M) \ p8F4(M8)/F4(Mh

) , (A16)

where we have used the following deÐnitions :

M8\ 6.005] 1014(h)0)3 , (A17)

M
h
\
A M
h~1 M

_

B
h3)02 , (A18)

and

F4(u) \ A1u0.67[1] (A2 u~0.1 ]A3 u~0.63)p]1@p , (A19)
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with and p \ 0.255.A1 \ 8.6594 ] 10~12, A2\ 3.5, A3\ 1.628] 109,
Equations can be used to solve and Ðnd the collapse redshift, corresponding to a halo of mass(A6)È(A19) equation (A5) zcoll,M. As noted when discussing we recommend using f \ 0.01 when solving since this value seems toFigure 5, equation (A5),

reproduce well the results of all our numerical experiments.
Once has been found, the characteristic density of the halo (expressed in units of the critical density at can bezcoll(M) z\ z0)computed from (see andeq. [5] Table 1)

d
c
(M, z0) D 3 ] 103)(z0)

A1 ] zcoll
1 ] z0

B3
, (A20)

where we have assumed f\ 0.01.
A FORTRAN subroutine that implements the procedure described here and returns for all the cosmologies wed

c
(M, z0)discuss is available from the authors upon request.
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